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Continuous linear maps on Banach Spaces: Suppose X and Y are Banach spaces then we are
interested in studying linear transformations T : X −→ Y that are continuous. The following are
equivalent for a linear map T : X −→ Y

(i) T is continuous.

(ii) T is continuous at the origin.

(iii) There is a constant M > 0 such that ∥Tx∥ ≤ M∥x∥ for all x ∈ X.

(iv) T is uniformly continuous.

To prove (ii) implies (iii), let ϵ = 1. There is a δ > 0 such that ∥x∥ < δ implies ∥Tx∥ < 1. Let x ̸= 0
so that y = δx/2∥x∥ has norm less than δ and so ∥Ty∥ < 1 from which we get

∥Tx∥ < 2∥x∥/δ.

So 2/δ is the M we are looking for.

The Baire Category theorem: This is one of the most important result in general topology on
which the entire edifice of functional analysis rests. Let us recall this important result.

Theorem: Suppose X is a complete metric space such that

X =
∞⋃
n=1

En

where each En is closed then at least one of the sets En must have non-empty interior.
Note that a closed set E has empty interior precisely when the complement X −E is a dense open

set. With this simple observation the proof is quite easy.
Proof: We prove this by contradiction. Suppose the result is false. Then each Gn = X − En is

open dense and
∞⋂
n=1

Gn = ∅.

We shall arrive at a contradiction by showing that the intersection of all these sets Gn is not only
non-empty but in fact dense in X. So let p ∈ X be arbitrary. Since G1 is dense, the ball B of radius
ϵ > 0 centered at p must have a point z1 ∈ G1. Since G1 is open we can find a r1 > 0 such that the
closed ball S1 of radius r1 centered at z1 is contained in G1 ∩B. We may assume that r1 < 1/2.

Now since G2 is dense, the open ball Br1(z1) must intersect G2 at say z2 ∈ Br1 ∩ G2. We select
r2 > 0 such that r2 < 1/4 and the closed ball S2 of radius r2 centered at z2 is contained in Br1 ∩G2 so
that

S2 ⊂ Br1 ⊂ S1

Next G3 is dense in X and so the open ball Br2 intersects G3 at a point say z3 ∈ Br2 ∩ G3 and G3

being open we infer that there is a r3 > 0 such that r3 < 1/8 and closed ball S3 of radius r3 centered
at z3 is contained in Br2 ∩G3 so that

S3 ⊂ Br2 ⊂ S2 ⊂ Br1 ⊂ S1
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Proceeding thus we construct a nested sequence

S1 ⊃ S2 ⊃ S3 ⊃ . . .

such that the diameters of these sets tend to zero. By Cantor’s intersection theorem we infer that
there is a point q contained in ALL the sets Sn. But for each j by construction

Sj ⊂ Gj

which means that q lies in ALL the sets Gj which is a contradiction since the intersection of ALL the
sets Gn is empty. We have completed the proof of the Baire category theorem.

Banach Steinhaus’s theorem: We shall only need this result in the special case where we have a
sequence of bounded linear maps Tn : X −→ C. We say that a sequence of continuous linear forms
{Tn} as above is pointwise bounded if for each x ∈ X there is a constant Mx such that

sup
n∈N

|Tnx| ≤ Mx

We say that the sequence of continuous linear forms {Tn} is uniformly bounded if there is a constant
M such that

sup
n∈N

|Tnx| ≤ M, for all ∥x∥ ≤ 1.

Theorem (Banach Steinhaus): If a sequence of of continuous linear maps Tn : X −→ C is
pointwise bounded then it is uniformly bounded.

Proof: Consider the family of closed sets

Ej = {x ∈ X : |Tnx| ≤ j, for all n ∈ N}

It is evident that these sets are closed. Let us show that the union of these sets is the whole of X.
Well, let x ∈ X. Then we know that there is a constant Mx > 0 such that

|Tnx| ≤ Mx, for all n ∈ N.

If j > Mx then we get x ∈ Ej and the claim is established that
⋃

Ej = X.
Now the Baire category theorem gives one of the sets Ej say EJ has an interior point p which

means there is an r > 0 such that Br(p) ⊂ EJ . Also for this p there is a Mp > 0 such that

|Tnp| ≤ Mp, for all n ∈ N.

Now for any ∥y∥ ≤ 1 the point p+ r
2
y lies in Br(p) ⊂ EJ whereby

|Tn(p) +
r

2
Tny| ≤ J, for all n ∈ N.

Using triangle inequality we get

|Tny| ≤
2

r

(
J + |Tnp|

)
≤ 2

r

(
J +Mp

)
Proof of the Banach Steinhaus theorem is now complete.
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Existence of a cont. funct. whose Fourier series diverges at the origin: We shall use the
Banach Steinhaus’s theorem to establish that the set of all 2π−periodic continuous functions whose
Fourier series at the origin diverges is a dense subset of Per[−π, π]. Recall that the N−th partial sum
of the Fourier series for f is given by

SN(f, x) =

∫ π

−π

f(t)DN(x− t)dt

where DN(ξ) is the Dirichlet kernel. We shall show that SN(f, 0) fails to converge (as N → ∞) for a
large collection of functions f ∈ Per[−π, π]. Write SN(f, 0) = TNf for simplicity and we have

TNf =

∫ π

−π

f(t)DN(t)dt

Suppose the Fourier series of EVERY function in Per[−π, π] converges at the origin. We shall arrive
at a contradiction.

The assumption says that SN(f, 0) = TNf converges as N → ∞ and so the sequence {TNf} is
bounded for each f ∈ Per[−π, π]. By Banach Steinhaus there must exist M > 0 such that

|TNf | ≤ M, for all f ∈ Per[−π, π] with ∥f∥ ≤ 1.

In other words ∣∣∣ ∫ π

−π

f(t)DN(t)dt
∣∣∣ ≤ M for all n ∈ N (7.3)

for all functions f ∈ Per[−π, π] with −1 ≤ f ≤ 1. We restrict to real valued functions. To carry on
the discussion further we need the following important information∫ π

−π

|Dn(t)|dt ∼ c log n (7.4)

Let us assume this for the moment and proceed further.
Suppose in (7.3) we take f(x) to be the signum function denoted σ(t) which takes values ±1

namely taking value +1 on those subintervals where DN(t) is positive and −1 on those subintervals
where DN(t) is negative. Then (7.3) would read∫ π

−π

|DN(t)|dt ≤ M, for all n ∈ N (7.5)

which plainly contradicts (7.4). The only objection to this reasoning is that the function that takes only
values ±1 is not continuous ! Observe that the sign of DN(t) alternates in alternate intervals of length
π/N so that the signum function we have chosen alternates between −1 and 1 on successive intervals
of length π/N and as such lies in L1[−π, π]. But we can appleal to Luzin’s theorem and obtain our
signum function σ as a limit of a sequence fj of continuous functions (vanishing at the endpoints) on
[−π, π] converging to f in L1 norm.
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