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Continuous linear maps on Banach Spaces: Suppose X and Y are Banach spaces then we are
interested in studying linear transformations 7" : X — Y that are continuous. The following are
equivalent for a linear map T : X — Y

(i) T is continuous.

)
(ii) T is continuous at the origin.
(iii) There is a constant M > 0 such that ||Tz| < M|z for all z € X
)

(iv) T is uniformly continuous.

To prove (ii) implies (iii), let € = 1. There is a § > 0 such that ||z| < ¢ implies ||Tz|| < 1. Let x # 0
so that y = dx/2||z|| has norm less than ¢ and so ||Ty|| < 1 from which we get

T[] < 2{[]|/o.

So 2/6 is the M we are looking for.

The Baire Category theorem: This is one of the most important result in general topology on
which the entire edifice of functional analysis rests. Let us recall this important result.

Theorem: Suppose X is a complete metric space such that

X = D E,
n=1

where each E,, is closed then at least one of the sets E,, must have non-empty interior.

Note that a closed set F has empty interior precisely when the complement X — F is a dense open
set. With this simple observation the proof is quite easy.

Proof: We prove this by contradiction. Suppose the result is false. Then each G, = X — E,, is

open dense and
() Gn=0.
n=1

We shall arrive at a contradiction by showing that the intersection of all these sets ), is not only
non-empty but in fact dense in X. So let p € X be arbitrary. Since (G; is dense, the ball B of radius
€ > 0 centered at p must have a point z; € G;. Since G is open we can find a r; > 0 such that the
closed ball Sy of radius r; centered at z; is contained in G; N B. We may assume that r; < 1/2.

Now since G5 is dense, the open ball B,,(z1) must intersect Gy at say zo € B,, N Ga. We select
ro > 0 such that ro < 1/4 and the closed ball Sy of radius ry centered at zs is contained in B,, N G2 so
that

Sy C fgr1 C 5

Next G is dense in X and so the open ball B,, intersects G5 at a point say z3 € B,, N G3 and Gg3
being open we infer that there is a r3 > 0 such that r3 < 1/8 and closed ball S5 of radius r3 centered
at z3 is contained in B,, N G5 so that

S3 C B,, CSy C B, C5



Proceeding thus we construct a nested sequence
513523533...

such that the diameters of these sets tend to zero. By Cantor’s intersection theorem we infer that
there is a point ¢ contained in ALL the sets S,,. But for each j by construction

SjCGj

which means that ¢ lies in ALL the sets GG; which is a contradiction since the intersection of ALL the
sets (G, is empty. We have completed the proof of the Baire category theorem.

Banach Steinhaus’s theorem: We shall only need this result in the special case where we have a
sequence of bounded linear maps T;, : X — C. We say that a sequence of continuous linear forms
{T,,} as above is pointwise bounded if for each € X there is a constant M, such that

sup |T,x| < M,
neN

We say that the sequence of continuous linear forms {7} is uniformly bounded if there is a constant
M such that

sup |Thoz| < M, forall |z| <1.
neN

Theorem (Banach Steinhaus): If a sequence of of continuous linear maps 7;, : X — C is
pointwise bounded then it is uniformly bounded.
Proof: Consider the family of closed sets

E;={reX : |T,x| <j, foralneN}

It is evident that these sets are closed. Let us show that the union of these sets is the whole of X.
Well, let x € X. Then we know that there is a constant M, > 0 such that

|Tx| < M,, forall néeN.

If j > M, then we get x € E; and the claim is established that |J E; = X.
Now the Baire category theorem gives one of the sets E; say E; has an interior point p which
means there is an r > 0 such that B,(p) C E;. Also for this p there is a M, > 0 such that

|T.p| < M,, forall neN.
Now for any ||y|| < 1 the point p + %y lies in B,.(p) C E; whereby
T (p) + ngy| <J, forall neN.
Using triangle inequality we get
2 2
Tyl < ;<J+ !Tnp\) < ;(J+ Mp)
Proof of the Banach Steinhaus theorem is now complete.
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Existence of a cont. funct. whose Fourier series diverges at the origin: We shall use the
Banach Steinhaus’s theorem to establish that the set of all 2r—periodic continuous functions whose
Fourier series at the origin diverges is a dense subset of Per[—m, 7]. Recall that the N—th partial sum
of the Fourier series for f is given by

Sx(f)= [ FODx(e -ty

where Dy (€) is the Dirichlet kernel. We shall show that Sy(f,0) fails to converge (as N — oo) for a
large collection of functions f € Per[—m, 7]. Write Sy (f,0) = T f for simplicity and we have

Tnf = / "R Dy ()t

Suppose the Fourier series of EVERY function in Per|—m, 1] converges at the origin. We shall arrive
at a contradiction.

The assumption says that Sy(f,0) = T f converges as N — oo and so the sequence {Tyf} is
bounded for each f € Per[—m, w]. By Banach Steinhaus there must exist M > 0 such that

Tnf| < M, forall f € Per[—m,n] with ||f| <1.

In other words -
‘/ f(t)DN(t)dt‘ <M forallneN (7.3)

for all functions f € Per[—m, 7] with —1 < f < 1. We restrict to real valued functions. To carry on
the discussion further we need the following important information

/7r | D, (t)|dt ~ clogn (7.4)

—Tr

Let us assume this for the moment and proceed further.

Suppose in (7.3) we take f(z) to be the signum function denoted o(t) which takes values +1
namely taking value +1 on those subintervals where Dy (t) is positive and —1 on those subintervals
where Dy (t) is negative. Then (7.3) would read

/ IDn(D)|dt < M, forall n € N (7.5)

—T

which plainly contradicts (7.4). The only objection to this reasoning is that the function that takes only
values £1 is not continuous ! Observe that the sign of Dy(t) alternates in alternate intervals of length
/N so that the signum function we have chosen alternates between —1 and 1 on successive intervals
of length /N and as such lies in L'[—m, 7]. But we can appleal to Luzin’s theorem and obtain our
signum function o as a limit of a sequence f; of continuous functions (vanishing at the endpoints) on
[—m, 7] converging to f in L' norm.



