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37 Examples. The Bergmann space



7. Functional analytic techniques in Fourier analysis

We now develop some basic notions on Banach spaces. Recall that a metric space is said to be complete
if every Cauchy sequence converges. A normed linear space is a vector space V endowed with a map
|| - || : V — R called a norm satisfying the following properties:

(i) [[v] > 0forall veV.
(i) [|v]| = 0 if and only if v = 0.
(iii) [[v+w| <|v]+|w]| =0, for all v,w € V.
(iv) ||tv]] = |t|||v|| for v € V and ¢ scalar.
Note that V' could be a real or a complex vector space. Given a norm on V' we define a metric on V' as
d(v,w) = |[v —w]|

If this metric is complete we say V' is a Banach space.

The Banach space Cla, b]:

The most important example of a Banach space is the set of all real or complex valued continuous
functions on [a, b]. We define

If1l = sup{|f(z)] : = € [a,b]}
We call this the sup-norm on Cla,b]. Since a closed subset of a complete metric space is complete
we infer that a closed vector subspace of a Banach space is again a Banach space. In particular the
subspace of C[—m, w] consisting of all 2r—periodic continuous functions on the real line can be regarded
as a Banach subspace of C[—m, 7. Since we shall be working with this space let us give it a name and
call it
Per[—m, m].

More examples of Banach Spaces. There are numerous examples of Banach spaces and here are
some

(i) The space LP[0, 1] where 1 < p < 0.
(i) The space L*(R) that is important in the theory of Fourier transforms.

(iii) If X is any compact metric space then C'(X') the space of all continuous complex valued functions
on X is evidently a Banach space.

(iv) The set of all continuous functions on the closed unit disc {|z| < 1} that are holomorphic in the
interior forms a Banach space with respect to the sup norm.

(v) Set of all 2m-periodic continuous functions on the real line which are Hélder continuous with
exponent «. This is a Banach space with respect to the norm

flz) - f(y)‘
(z —y)~

£l = 1f(0)] + sup
TH£Y

Exercise: Prove the last two statements.



The Bergman space: Here we shall work out one example in detail. Let €2 be a connected domain
in the complex plane. We let A(£2) to be the set of all holomorphic functions on € and

A2(Q) = A(Q) N LX(Q).

Theorem The space A?(Q2) is a closed subspace of L?*(€2) and so is complete. That is, it is a Hilbert
space. This space is known as the Bergman space.

To prove the theorem let f,, be a sequence in A%(2) converging to f € L*(©2). We have to show
that f is actually holomorphic on 2. We first establish that f is continuous. Since continuity is a
local property we may work in a closed disc Da,.(p) C Q. We need to recall the mean value property
for holomorphic functions namely, if ¢ is holomorphic

1

2
9(p) = 2—/ g(p+pet)dt, 0<p<r.
T Jo

Let us multiply by p and integrate with respect to p over the interval [0, r]:

702

1 21 r y
29(1)) 27T/O /O g(p + pe™)pdp

From this we infer the solid mean value theorem:

o) = 1z [[ oty

Exercise: Derive the solid mean value property of harmonic functions assuming the mean value property
over spheres.
Now let z,w € D,(p) so that D,(z) and D,(w) both sit inside Dy, (p)

1 // .
g(z) —g(w) = — g(x +1y)dxdy.
@)= [[ e

Taking absolute values and using the Cauchy-Schwartz inequality we get

D,.(w)AD,
9(2) - glow)] < lglp L ELLIADC)) (r.1)
Exercise: Draw pictures and show that
area(D,(w)AD,(z)) < 72r|z — w| + O(|z — w|?). (7.2)

Hint: Inscribe the largest possible disc D in the lens formed by D,(z) and D,(w). Use that the area
of D,(w)AD,(z) is strictly less than 2(7r? — area(D)).
We infer from (7.1)-(7.2) that for n =1,2,3,...

[fn(2) = fo(w)| < CollfullV]z —w], 2w e Dy

where C, is a constant depending on r and from this we infer that the family { f,}, is equi-continuous
on each disc D, whereby a subsequence converges uniformly on D,. This uniform limit must be f
(why?) whereby the continuity of f on  is established.

Exercise: Use the solid MVP on discs to show that the sequence { f,,}, is uniformly bounded on
D,. Show using dominated convergence theorem that the integral of f over every triangle in D, is
zero and deduce that the limit function f is holomorphic.
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