Fourier Analysis and its Applications Prof. G. K. Srinivasan Department of Mathematics Indian Institute of Technology Bombay 37 Examples. The Bergmann space

7. Functional analytic techniques in Fourier analysis

We now develop some basic notions on Banach spaces. Recall that a metric space is said to be *complete* if every Cauchy sequence converges. A *normed linear space* is a vector space V endowed with a map $\|\cdot\|:V\longrightarrow\mathbb{R}$ called a norm satisfying the following properties:

- (i) $\|\mathbf{v}\| \ge 0$ for all $\mathbf{v} \in V$.
- (ii) $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = 0$.
- (iii) $\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\| = 0$, for all $\mathbf{v}, \mathbf{w} \in V$.
- (iv) $||t\mathbf{v}|| = |t|||\mathbf{v}||$ for $\mathbf{v} \in V$ and t scalar.

Note that V could be a real or a complex vector space. Given a norm on V we define a metric on V as

$$d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$$

If this metric is complete we say V is a Banach space.

The Banach space C[a,b]:

The most important example of a Banach space is the set of all real or complex valued continuous functions on [a, b]. We define

$$||f|| = \sup\{|f(x)| : x \in [a,b]\}$$

We call this the sup-norm on C[a,b]. Since a closed subset of a complete metric space is complete we infer that a closed vector subspace of a Banach space is again a Banach space. In particular the subspace of $C[-\pi,\pi]$ consisting of all 2π -periodic continuous functions on the real line can be regarded as a Banach subspace of $C[-\pi,\pi]$. Since we shall be working with this space let us give it a name and call it

$$Per[-\pi,\pi].$$

More examples of Banach Spaces. There are numerous examples of Banach spaces and here are some

- (i) The space $L^p[0,1]$ where $1 \le p \le \infty$.
- (ii) The space $L^2(\mathbb{R})$ that is important in the theory of Fourier transforms.
- (iii) If X is any compact metric space then C(X) the space of all continuous complex valued functions on X is evidently a Banach space.
- (iv) The set of all continuous functions on the closed unit disc $\{|z| \le 1\}$ that are holomorphic in the interior forms a Banach space with respect to the sup norm.
- (v) Set of all 2π -periodic continuous functions on the real line which are Hölder continuous with exponent α . This is a Banach space with respect to the norm

$$||f|| = |f(0)| + \sup_{x \neq y} \left| \frac{f(x) - f(y)}{(x - y)^{\alpha}} \right|$$

Exercise: Prove the last two statements.

The Bergman space: Here we shall work out one example in detail. Let Ω be a connected domain in the complex plane. We let $A(\Omega)$ to be the set of all holomorphic functions on Ω and

$$A^{2}(\Omega) = A(\Omega) \cap L^{2}(\Omega).$$

Theorem The space $A^2(\Omega)$ is a closed subspace of $L^2(\Omega)$ and so is complete. That is, it is a Hilbert space. This space is known as the *Bergman space*.

To prove the theorem let f_n be a sequence in $A^2(\Omega)$ converging to $f \in L^2(\Omega)$. We have to show that f is actually holomorphic on Ω . We first establish that f is continuous. Since continuity is a local property we may work in a closed disc $D_{2r}(p) \subset \Omega$. We need to recall the *mean value property* for holomorphic functions namely, if g is holomorphic

$$g(p) = \frac{1}{2\pi} \int_0^{2\pi} g(p + \rho e^{it}) dt, \quad 0 \le \rho \le r.$$

Let us multiply by ρ and integrate with respect to ρ over the interval [0, r]:

$$\frac{r^2}{2}g(p) = \frac{1}{2\pi} \int_0^{2\pi} \int_0^r g(p + \rho e^{it}) \rho d\rho dt$$

From this we infer the *solid mean value theorem*:

$$g(p) = \frac{1}{\pi r^2} \iint_{|z-p| \le r} g(z) dx dy$$

Exercise: Derive the solid mean value property of harmonic functions assuming the mean value property over spheres.

Now let $z, w \in D_r(p)$ so that $D_r(z)$ and $D_r(w)$ both sit inside $D_{2r}(p)$

$$g(z) - g(w) = \frac{1}{\pi r^2} \iint_{D_r(w)\Delta D_r(z)} g(x+iy) dx dy.$$

Taking absolute values and using the Cauchy-Schwartz inequality we get

$$|g(z) - g(w)| \le ||g||_{L^2} \frac{\sqrt{\operatorname{area}(D_r(w)\Delta D_r(z))}}{\pi r^2}.$$
 (7.1)

Exercise: Draw pictures and show that

$$\operatorname{area}(D_r(w)\Delta D_r(z)) \le \pi 2r|z-w| + O(|z-w|^2).$$
 (7.2)

Hint: Inscribe the largest possible disc D in the lens formed by $D_r(z)$ and $D_r(w)$. Use that the area of $D_r(w)\Delta D_r(z)$ is strictly less than $2(\pi r^2 - \text{area}(D))$.

We infer from (7.1)-(7.2) that for n = 1, 2, 3, ...

$$|f_n(z) - f_n(w)| \le C_r ||f_n|| \sqrt{|z - w|}, \quad z, w \in D_p$$

where C_r is a constant depending on r and from this we infer that the family $\{f_n\}_n$ is equi-continuous on each disc D_p whereby a subsequence converges uniformly on D_p . This uniform limit must be f (why?) whereby the continuity of f on Ω is established.

Exercise: Use the solid MVP on discs to show that the sequence $\{f_n\}_n$ is uniformly bounded on D_p . Show using dominated convergence theorem that the integral of f over every triangle in D_p is zero and deduce that the limit function f is holomorphic.