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Existence of eigen-values and eigen-functions: Returning to the Sturm-Liouville problem y′′ +
λρ(x)y = 0 with Dirichlet BC at 0 and 1, let us consider the solution y(x, λ) of the ODE with initial
conditions

y(0) = 0, y′(0) = 1.

The solution y(x, λ) is continuously differentiable with respect to the parameter λ and we are interested
in those values of λ such that

y(x, λ) = 0, when x = 1. (6.10)

Now ρ(x) is continuous and non-negative. We now assume that it is strictly positive and that m2 and
M2 are its infimum and supremum respectively.

Idea is to appeal to the Sturm comparison theorem with y′′ + λm2y = 0 and y′′ + λM2y = 0
respectively. Note that for each λ, the equation

y(x, λ) = 0 (6.11)

has a discrete set of zeros
ζ1(λ), ζ2(λ), ζ3(λ), . . .

and the zeros are simple. Well, suppose x0 is a double zero then we have in addition to (6.11) the
equation

y′(x0, λ) = 0 (6.12)

Now the uniqueness clause in the fundamental existence uniqueness theorem for the IVP with zero
intial conditions at x0 implies that the function y(x, λ) must be identically zero which is a contradiction.

Continuity of the zeros: We now show that each of the zeros ζk(λ) varies continuously with respect
to λ. To do this we employ the implicit function theorem. Let us prove the continuity at an arbitrary
value λ0 and call ζk(λ0) = ζ0. Then we have,

y(ζ0, λ0) = 0.

We also know that y′(ζ0, λ0) ̸= 0 where the prime indicates derivative of y(x, λ) with respect to x. The
implicit function theorem now tells us that there are intervals J1 and J2 of λ0 and ζ0 respectively such
that we can solve the equation

y(x, λ) = 0

uniquely for each λ ∈ J1 for a value ζ(λ) ∈ J2. This unique solution is also continuously differentiable
with respect to λ. We are now ready to prove the existence of an infinite sequence of eigen-values. We
compare the function y(x, λ) with sinM

√
λx. Between any two zeros of y(x, λ), there must be a zero

of sinM
√
λx. For small values of λ the function sinM

√
λx has no zeros in (0, 1] Whereby the first

zero of y(x, λ) must be larger than 1.
Now look at large values of λ and compare with sinm

√
λx. Between two zeros of the latter there

must be a zero of y(x, λ) and the latter has zeros in (0, 1] for large λ which implies that the first zero
of y(x, λ) must be in (0, 1).

In other words ζ1(λ) > 1 for small values of λ and ζ1(λ) < 1 for large values of λ. By continuity of
ζ1(λ) we see that there is a value λ1 such that ζ1(λ1) = 0 which means

y(1, λ1) = 0.

and this λ1 is evidently the first eigen-value of the Sturm Liouville problem. The argument for the
second eigen value is similar and proceeds by looking at ζ2(λ) for small and large values of λ respectively.
Proof of the existence of eigen-values is thereby completed.
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Zeros of eigen-functions: It is evident from our construction that the first eigen-function has no
zeros on the open fundamental interval (0, 1). All other eigen-functions must have at least one zero in
(0, 1). This follows at once from the orthogonality of eigen-functions. The zeros of the eigen-function
are called the nodes of the eigen-function. It is not difficult to show that the n-th eigen-function has
exactly n− 1 nodes in the fundamental interval.

These notions also make sense for boundary value problems in higher dimensions. In higher dimen-
sions they assume a more spectacular aspect. See Rayleigh’s theory of sound Vol 1 and 2 for details
on this. Proofs of many of these results can be found in Courant-Hilbert’s methods of mathematical
physics.

With these remarks we close this chapter.

12. Prove the mean value theorem for integrals:

Suppose f, g are continuous on [a, b] and g > 0 on (a, b) show that there is a c ∈ (a, b) such that∫ b

a

f(x)g(x)dx = f(c)

∫ b

a

g(x)dx.

Hint: First prove that if f is continuous∫ b

a

f(x)dx = f(c)(b− a), for some c ∈ (a, b).

Now use the integral of g over [a, x] as a variable of integration.

13. Let u(x) =
√
kxJn(kx). Show that u satisfies the ODE

u′′ = −
(
k2 −

(n2 − 1
4

x2

))
u

The last equation suggests that when x is very large u(x) must behave like the sine function and
Jn(kx) must behave like sin kx/

√
kx and as such must have infinitely many zeros. We shall see that

this is indeed so if k > 1. The last condition can be removed later.

14. Let v(x) = sin(x− a). Show that

d

dx
(−vu′ + uv′) = uv

(
k2 − 1−

(n2 − 1
4

x2

))
15. Let a be so large that k2 − 1− (n2 − 1/4)/x2 > 0 on [a, a+ π]. Integrate the equation obtained

in the previous exercise over [a, a+ π] and use the MVT for integrals with

g(x) = sin(x− a)
(
k2 − 1−

(n2 − 1
4

x2

))
which is positive on (a, a+ π). So for some c ∈ (a, a+ π) we have

−(u(a+ π) + u(a)) = u(c)

∫ a+π

a

v(x)
(
k2 − 1−

(n2 − 1
4

x2

))
dx

Thus we see that u(a), u(c) and u(a + π) cannot all have the same sign. Thus u must have a zero in
every interval (a, a+ π) for all a >> 1. We have proved,
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Theorem (Zeros of Bessel’s Functions): For k > 1, the function Jn(kx) has infinitely many zeros
for each n ≥ 0.

Explain why the condition k > 1 can be replaced by k = 1 or even k > 0? We have seen an
application of this theorem to the theory of wave propagation. Another interesting proof via the
integral representation is on pp. 76 - 78 of D. Jackson, Fourier series and orthogonal polynomials,
Dover, New York, 2004. See also G. N. Watson, Treatise on the theory of Bessel functions, p. 500 ff
for a discussion of the techniques used by L. Euler and Lord Rayleigh to compute the zeros of Jp(x).

Hill’s equation and the functions of Mathews I mention in passing that the case of an elliptical
membrane has been considered by Émile Léonard Mathieu in 1868 and the resulting ODE known as
the Mathieu equation:

y′′ + (a+ b cos 2x)y = 0.

where b is given and a is an eigen-parameter. The equation has led to a long and rich chapter in the
theory of analytic ODEs, generalized and studied by G. W. Hill in 1886 in his researches on Lunar
motion. Unfortunately we are not in a position to say anything about these exciting theory in this
elementary course!
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