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Exercises:

2. Show that the eigen-values of
y′′ + λρy = 0, (ρ(x) > 0)

with boundary conditions y(0) = 0 = y(1) are positive real numbers.

3. Determine the eigen-values and eigen-functions of the Sturm-Liouville problem

y′′ − 2y′ + (1 + λ)y = 0

with boundary condition y(0) = 0, y(1) = 0.

4. Determine the eigen-values and eigen functions of the Sturm-Liouville problem

x2y′′ + xy′ + λy = 0

on [e, 1/e] with the periodic boundary conditions:

y(1/e) = y(e), y′(1/e) = y′(e).

5. Show that the eigen-values of the boundary value problem

y′′ + λy = 0, y(0) = 0, y(1) + y′(1) = 0

are given by λ = k2 where k satisfies tan k + k = 0. Graphically show that there are infinitely
many roots. To see how this type of BC appears in physical problem, see the example on p. 117,
§67 of Byerly’s text.

6. A rigid body is rotated with uniform and fixed angular speed about an axis that is not specified.
How would one choose the axis of rotation so as to maximize the rotational Kinetic Energy?
Formulate the problem mathematically.

7. Variational principles underlying eigen-values and eigen vectors/functions. Suppose A is a n×n
real symmetric matrix, show that the maximum and the minimum of the quadratic function

⟨Ax, x⟩, x2
1 + x2

2 + · · ·+ x2
n = 1

are both attained at eigen-vectors and the maximum and minimum values are the largest and
smallest eigen-values of A.

Proof of the Min/Max properties of Eigen-values: Let Q(v) = vTAv. This is a quadratic
polynomial in n-variables and as such attains its minimum value at some point say v1 on the unit
sphere in Rn. We now perturb the vector v1 to say

w = (v1 + ϵh)/∥v1 + ϵh∥

and compare the values of the quadratic at the two points namely

Q(v1) ≤ Q(w), for all ϵ small enough.
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Thus, we get after cross multiplying by ∥v1+ϵh∥2, the following inequality valid for all small ϵ positive
or negative !

Q(v1)∥v1 + ϵh∥2 ≤ (v1 + ϵh)TA(v1 + ϵh).

Expanding and cancelling off Q(v1) we get

2ϵQ(v1)h
Tv1 ≤ 2ϵhTAv1 + ϵ2(hTAh−Q(v1)∥h∥2).

We now divide by ϵ and let ϵ → 0. Since ϵ may have either sign we get the pair of inequalities

hT (Q(v1)v1 − Av1) ≤ 0, and hT (Q(v1)v1 − Av1) ≥ 0.

Thus we conclude hT (Av1 −Q(v1)v1) = 0. Since h is arbitrary we see that

Av1 = Q(v1)v1

In other words the minimum is attained at an eigen-vector and the minimum value is the corresponding
eigen-value.
Exercise: Examine carefully the computations and explain where have we used the fact that A is a
symmetric matrix?
To proceed further, let S be the intersection of the unit sphere in Rn with the hyperplane

v · v1 = 0.

This is also a closed bounded set and the minimum of Q(v) on S is attained at say v2 and the
corresponding Q(v2) is not less than Q(v1) (why?). Now we perturb v2 to

w = (v2 + ϵh)/∥v2 + ϵh∥

where h is chosen such that h · v1 = 0. Again Q(v2) ≤ Q(w). Multiplying the inequality through by
∥v2 + ϵh∥2, expanding out and cancelling Q(v2) we get as before

2ϵhT (Q(v2)v2 − Av2) ≤ ϵ2(hTAh−Q(v2)∥h∥2).

Dividing by ϵ and letting ϵ → 0 we get the pair of inequalities from which we again deduce

hT (Q(v2)v2 − Av2) = 0.

This is now valid for all h such that h · v1 = 0. But this is also holds for h parallel to v1

Exercise: Verify the last statement.
Hence Q(v2)v2−Av2 = 0. Thus Q(v) attains its minimum over S at an eigen-vector v2. The minimum
value is the corresponding eigen-value. By construction v2 is orthogonal to v1. Now minimize Q(v)
over the intersection of the unit sphere in Rn with the pair hyperplanes

v · v1 = 0, v · v2 = 0

and the rest of the proof simply writes itself out. The process terminates after we have n orthogonal
eigen-vectors of our matrix A. We have proved
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Theorem ([Spectral Theorem): A real symmetric matrix has an orthonormal basis of eigen-
vectors.

The analogue of the above result for self-adjoint Diff. Eqns with Dirichlet BC is a serious matter
that has lead to a huge corpus of mathematical research -

for these mathematical development against a historical back-drop see the introductory parts of
R. Courant: The Dirichlet’s principle, conformal mappings and minimal surfaces, Dover Reprint,
2005. See the free preview of the first three pages of introduction on the Internet!
Let us consider the problem of minimizing the “energy”∫ 1

0

(y′(t))2dt (6.4)

subject to the condition ∫ 1

0

y(t)2ρ(t)dt = 1. (6.5)

where y(t) ranges over continuous piecewise smooth functions with y(0) = y(1) = 0 and ρ(x) is a
positive continuous function on [0, 1].

The Dirichlet Principle: The minimization problem (6.4)-(6.5) has a twice continuously differen-
tiable solution which corresponds to the smallest eigen-value of the Sturm-Liouville problem

y′′ + λρ(x)y = 0, y(0) = 0 = y(1). (6.6)

The principal difficulty is in showing
(i) That the minimizer exists and
(ii) The minimizer is twice continuously differentiable.
These are rather deep waters. Motivated by potential theoretic considerations, Riemann uses these

ideas to prove his celebrated theorem in complex analysis known today as The Riemann Mapping
Theorem. The Riemann mapping theorem asserts that a proper simply connected open subset of C
can be mapped onto the unit disc in the plane by a bijective holomorphic function.
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