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Fourier-Legendre Series: This is a result similar in spirit to the Fourier Bessel expansion. Rather
than state the theorem we give an example due to Lord Rayleigh, Theory of sound, Volume - II, p.
273.

eitx =
∞∑
n=0

(2n+ 1)in
√

π

2t
Jn+ 1

2
(t)Pn(x). (5.16)

Prove by induction

Jn+ 1
2
(t) =

1√
πn!

( t

2

) 1
2
+n

∫ 1

−1

(1− x2)n cos txdx (5.17)

Formally deduce the result of Lord Rayleigh. This expansion appears in connection with scattering of
plane waves by a spherical obstacle.

Discussion of Rayleigh’s expansion: Let us begin by recalling

Jp(t) =
∞∑
n=0

(−1)n

n!Γ(n+ p+ 1)

( t

2

)p+2n

so that when p = 1/2 we get easily

J1/2(t) =

√
2

πt
sin t =

1√
πn!

( t

2

) 1
2
+n

∫ 1

−1

(1− x2)n cos txdx, (n = 0).

and it is easy to verify that the following result is true for n = 0.
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2
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1√
πn!

( t

2
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−1

(1− x2)n cos txdx.

d

dt
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2Jn+ 1
2
(t)

)
=

1√
πn!

(1
2
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2
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∫ 1

−1

−2x(1− x2)n sin txdx

=
1√

π(n+ 1)!

(1
2

) 1
2
+n+1

∫ 1

−1

( d

dx
(1− x2)n+1

)
(sin tx)dx

=
−t√

π(n+ 1)!

(1
2

) 1
2
+n+1

∫ 1

−1

(1− x2)n+1(cos tx)dx

Now recalling from chapter 1 that (t−pJp(t))
′ = −t−pJp+1(t) we get after some routine algebra the

stated result (5.17). We are now ready to establish the result of Rayleigh on the Fourier-Legendre
expansion of the plane wave exp(itx) namely equation (5.16). We begin with the Ansatz

eitx =
∞∑
n=0

cnPn(x)

where the coefficients cn would obviously depend on t. Taking the inner-product with Pn(x) gives

cn∥Pn(x)∥2 =
∫ 1

−1

eitxPn(x)dx.

We must now use the Rodrigues’ formula for Pn(x) and perform an integration by parts:

cn∥Pn(x)∥2 =
(it)n

2nn!

∫ 1

−1

eitx(1− x2)ndx =
(it)n

2nn!

∫ 1

−1

(1− x2)n cos txdx.

Finally use (5.17) and the fact that ∥Pn(x)∥2 = 2/(2n+ 1) and we get (5.16).
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Laplace’s integral representations: Recall that for the Bessel functions Jn(x) of integral orders
we had an integral representation that we derived in chapter 1 from Schlömilch’s formula:

Jn(x) =
1

π

∫ π

0

cos(x sin θ − nθ)dθ

There is a similar formula for the Legendre polynomials Pn(x) due to Laplace that we shall now derive.

Theorem: For a non-negative integer n,

Pn(x) =
1

π

∫ π

0

(x+
√
x2 − 1 cos θ)ndθ (5.18)

We begin with a simple observation:

Qn(x) =
1

π

∫ π

0

(x+
√
x2 − 1 cos θ)ndθ

is a polynomial in x for n = 0, 1, 2, . . . . Well, expand using the binomial theorem and the odd powers
of

√
x2 − 1 will have coefficients ∫ π

0

cos2j+1 θdθ.

Verify that Q0(x) = 1 = P0(x) and Q1(x) = x = P1(x).
It suffices to show that the sequence Qn(x) satisfies the same three term recursion as Pn(x) namely,

(n+ 1)Qn+1 − x(2n+ 1)Qn + nQn−1 = 0.

Write A for x+
√
x2 − 1 cosϕ and expand the integrand An+1 = (x+

√
x2 − 1 cosϕ)An:

An+1 = xAn + An
√
x2 − 1

d

dϕ
sinϕ

Integrate by parts. We get

Qn+1 = xQn +
n

π

∫ π

0

An−1(x2 − 1) sin2 ϕdϕ.

Now write

(x2 − 1) sin2 ϕ = (x2 − 1)− (
√
x2 − 1 cosϕ)2

= (x2 − 1)− (A− x)2 = 2Ax− A2 − 1.

Thus we get

Qn+1 = xQn −
n

π

∫ π

0

(An+1 + An−1 − 2xAn)dϕ

which readily translates to

(n+ 1)Qn+1 − x(2n+ 1)Qn + nQn−1 = 0.

For a different proof of this see Byerly, pp. 165-167. There is a remarkable transformation that leads
to

3



Theorem (Laplace’s second integral representation): For a non-negative integer n and real
values of with x ≥ 1,

Pn(x) =
1

π

∫ π

0

dθ

(x+
√
x2 − 1 cos θ)n+1

. (5.19)

It is a routine matter to verify that the integral on the right hand side makes perfect sense if x is
real and non-zero. It is trivial to see that the formula is correct if x = 1 and we shall assume that
x > 1. Also note that even if x is complex and not purely imaginary the denominator in the integrand
is bounded away from zero in absolute value and so the integral makes sense as soon as we prescribe
the value of

√
x2 − 1. All we need to check is that x +

√
x2 − 1 cos θ ̸= 0 and so by continuity with

respect to θ the claim follows. We now assume x > 1 and use the first formula of Laplace

Pn(x) =
1

π

∫ π

0

(x+
√
x2 − 1 cos θ)ndθ. (5.18)

Perform the change of variables

x+
√
x2 − 1 cos θ = 1/(x+

√
x2 − 1 cosϕ). (5.20)

We need to check that this change of variables is licit. We regard θ as a function of ϕ and see if it is
well-defined in the first place. Solving (5.20) for cos θ gives

cos θ = −
(√x2 − 1 + x cosϕ

x+
√
x2 − 1 cosϕ

)
(5.21)

Squaring the RHS of (5.21) we see that it is less than or equal to one so that RHS of (5.21) does indeed
define θ uniquely in [0, π]. We also see that the RHS of (5.21) takes the value 1 if and only if ϕ = π
and takes the value −1 precisely when ϕ = 0. Denominator of RHS of (5.21) never vanishes as we have
seen so that the RHS is differentiable as a function of ϕ. Next, look at the function of two variables:

F (θ, ϕ) = x+
√
x2 − 1 cos θ − 1/(x+

√
x2 − 1 cosϕ)

Fθ(θ, ϕ) ̸= 0 when θ ∈ (0, π) so that the implicit function theorem does confirm that θ is indeed a
smooth function of ϕ ∈ (0, π) and the derivative dθ

dϕ
is given by

sin θ
dθ

dϕ
=

− sinϕ

(x+
√
x2 − 1 cosϕ)2

(5.22)

Thus dθ
dϕ

̸= 0 on the interval (0, π) confirming that θ is a stricly decreasing function of ϕ and the change

of variables is licit. Let us now make this substitution (5.20) in the integral (5.18) and we get

Pn(x) =
1

π

∫ π

0

dϕ

(x+
√
x2 − 1 cosϕ)n+2

sinϕ

sin θ
.

Finally using (5.21) we get that
sinϕ

sin θ
= x+

√
x2 − 1 cosϕ

completing the proof of (5.19). For a different proof based on complex function theory is available in
R. Courant and D. Hilbert, Methods of Math. Phy - I, pp. 503-504.

The integrals (5.18)-(5.19) were given by Pierre Simon Marquis de Laplace in his great work on
Celestial Mechanics: Traité de méchanique célèste. A five volume set reprinted by Chelsea. We next
look at a result due to C. Neumann (1862).
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A formula of C. Neumann: Use Laplace’s integral representation to prove

lim
n→∞

Pn(cos(x/n)) = J0(x).

Solution: Substituting into Laplace’s formula (5.18)

Pn(cos(x/n)) = (cos(x/n))n
1

π

∫ π

0

(1 + i tan(x/n) cos θ)ndθ (5.23)

The factor (cos(x/n))n tends to one as n → ∞. Let us then focus on the integral. Note that if
a(λ) → α then by L’Hospital’s rule,

(1 + λa(λ))1/λ −→ eα

Passing to the limit in (5.23) we get

lim
n→∞

Pn(cos(x/n)) =
1

π

∫ π

0

eix cos θdθ = J0(x).
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