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Exercises:

1. Compute
∫ 1

−1
(Pn(x))

2dx

2. Show that
∫ 1

−1
(1− x2)(P ′

n(x))
2dx = 2n(n+1)/(2n+1). Hint: Multiply the Diff. Eqn by Pn and

integrate by parts.

3. Use Rodrigues formula to prove that the Legendre polynomial of degree n has precisely n distinct
roots in the open interval (−1, 1). Use Rolle’s theorem. Note: The roots were used by Gauss
in 1814 in his famous quadrature formula. See the discussion on pp. 56-69 of S. Chandasekhar,
Radiative transfer, Dover Publications, Inc., New York, 1960.

4. Show that the Legendre polynomials satisfy the three term recursion formula

(n+ 1)Pn+1 − x(2n+ 1)Pn + nPn−1 = 0.

Let us take a few minutes and discuss in detail the exercise in the previous slide. Recall Rolle’s theorem
which says (in particular) that if f is a polynomial vanishing at a and b then the derivative f ′ must
vanish at least once in (a, b).

Now let us assume that the polynomial f has a double root at a and b. Then we have that

f(a) = f ′(a) = 0, f(b) = f ′(b) = 0.

Rolle’s theorem as such gives a c ∈ (a, b) such that f ′(c) = 0. But now we have that f ′ vanishes at
three points namely, a, c and b. Thus applying Rolle’s theorem to f ′ we conclude that f ′′ must vanish
at least once in (a, c) and on (c, b).

In particular taking f(x) = (1 − x2)2, which has double roots at ±1, we infer that its second
derivative must vanish at two distinct points in (−1, 1). In other words P2(x) has two distinct and
exactly two distinct roots in (−1, 1). Now suppose f is a polynomial with a triple root at a and b then
show that the third derivative f ′′′ must have at least three distinct roots in (−1, 1) and in particular
the Rodrigues formula says that P3(x) has three distinct roots in (−1, 1).

Generally for each n = 0, 1, 2, . . . , the polynomial

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n

has n−distinct roots in (−1, 1). The Rodrigues formula immediately gives us the following expression
for the leading coefficient of Pn(x)

Lc(Pn(x)) =
(2n)!

2n(n!)2
(5.13)

Well,

Lc(Pn(x)) =
1

2nn!
Lc

( dn

dxn
(x2 − 1)n

)
=

1

2nn!
Lc

( dn

dxn
(x2n)

)
=

(2n)(2n− 1) . . . (n+ 1)

2nn!

=
(2n)!

2n(n!)2
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Let us now derive the three term recurrence relation (exercise 4):

(n+ 1)Pn+1 − x(2n+ 1)Pn + nPn−1 = 0. (5.14)

Since {P0(x), . . . , PN(x)} is a basis for the vector space of all polynomials of degree at most N , we see
that

(2n+ 1)xPn(x) = a0P0(x) + · · ·+ an+1Pn+1(x)

which is the Fourier expansion of xPn(x). Now taking the inner-product of both sides with Pj(x) in
L2[−1, 1] we get

(2n+ 1)⟨xPn(x), Pj(x)⟩ = aj∥Pj(x)∥2

But this can be rewritten as

(2n+ 1)⟨Pn(x), xPj(x)⟩ = aj∥Pj(x)∥2 (5.15)

Suppose 0 ≤ j ≤ n − 2 then xPj(x) is a polynomial of degree at most n − 1 so that it is a linear
combination of

P0(x), P1(x), . . . , Pn−1(x)

whereby we see that
xPj(x) ⊥ Pn(x), j = 0, 1, . . . , n− 2.

So (5.15) implies
a0 = a1 = · · · = an−2 = 0

and we get
(2n+ 1)xPn(x) = an−1Pn−1(x) + anPn(x) + an+1Pn+1(x)

Now since Pn(x) and xPn(x) have opposite pairity whereas xPn(x), Pn−1(x), Pn+1(x) have the same
pairity we conclude that an = 0 as well. Hence

(2n+ 1)xPn(x) = an−1Pn−1(x) + an+1Pn+1(x)

Putting x = 1 we get at once
2n+ 1 = an−1 + an+1.

To obtain one more relation between an−1 and an+1,

(2n+ 1)Lc(Pn(x)) = an−1Lc(Pn−1(x)) + an+1Lc(Pn+1(x)).

The details can be left for you to complete.

Normalization constants Now that we have an orthogonal system of vectors we must see what is
the norm of each of the vectors namely the normalizing constants for the Legendre polynomials. To
this end let us compute the inner product ⟨Pn(x), Pn(x)⟩. Well,

4n(n!)2
∫ 1

−1

(Pn(x))
2dx =

∫ 1

−1

Dn(x2 − 1)nDn(x2 − 1)ndx
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We must now repeatedly integrate by parts and transfer all the derivatives from the second factor onto
the first as we did earlier to establish the orthogonality of the sequence of polynomials Dm(x2 − 1)m

for m = 0, 1, 2, . . . . At the first iterate we get

4n(n!)2
∫ 1

−1

(Pn(x))
2dx = −

∫ 1

−1

Dn+1(x2 − 1)nDn−1(x2 − 1)ndx+B1

where B1 is the collection of boundary terms that appear. Let us examine these boundary terms in
detail. We have

B1 = Dn(x2 − 1)nDn−1(x2 − 1)n
∣∣∣1
−1

But notice that since f(x) = (x2 − 1)n has ±1 as roots of multiplicity n, all the derivatives of f upto
and including order n− 1 must vanish at ±1 implying that the boundary terms B1 must vanish. Now
one more integration by parts gives:

4n(n!)2
∫ 1

−1

(Pn(x))
2dx =

∫ 1

−1

Dn+2(x2 − 1)nDn−2(x2 − 1)ndx+B2

where the boundary terms B2 are

B2 = −Dn+1(x2 − 1)nDn−2(x2 − 1)n
∣∣∣1
−1

which again must vanish and so on. After integrating by parts n times we get

4n(n!)2
∫ 1

−1

(Pn(x))
2dx = (−1)n

∫ 1

−1

D2n(x2 − 1)n(x2 − 1)ndx

Observe that D2n(x2 − 1)n = D2nx2n = (2n)! whereby

4n(n!)2
∫ 1

−1

(Pn(x))
2dx = (2n)!

∫ 1

−1

(1− x2)ndx

= 2(2n)!

∫ 1

0

(1− x2)ndx

= (2n)!

∫ 1

0

(1− u)nu−1/2du

Recall now the beta function B(p, q) (p, q > 0) defined by

B(p, q) =

∫ 1

0

(1− u)p−1uq−1du.

So the expression obtained in the last slide can be expressed as

4n(n!)2
∫ 1

−1

(Pn(x))
2dx = (2n)!B(n+ 1, 1/2).

Invoking the famous beta-gamma relation of Euler,

B(p, q) = Γ(p)Γ(q)/Γ(p+ q),
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we get

4n(n!)2
∫ 1

−1

(Pn(x))
2dx = n!(2n)!

√
π/Γ(n+

3

2
).

We have used the fact that Γ(1/2) =
√
π. To simplify the expression further, we use the relation

Γ(x+ 1) = xΓ(x) and we get

∥Pn∥2 =
(2n)!

4nn!(n+ 1
2
)(n− 1

2
) . . . 3

2
1
2

=
2

2n+ 1

For n = 0 we get ∥P0∥2 = 2 and for n = 1 we get ∥P1∥2 = 2/3 which checks out via direct calculation
since P0(x) = 1 and P1(x) = x.

More Problems on Legendre Polynomials

5. Prove that P ′
n(1) =

1
2
n(n+ 1).

6. Prove that P ′
n+1 − xP ′

n = (n+ 1)Pn

7. Prove that (x2 − 1)P ′
n − nxPn + nPn−1 = 0.

8. Prove that P ′
n+1 − P ′

n−1 − (2n+ 1)Pn = 0.

9. Prove that xP ′
n − P ′

n−1 = nPn.

10. Suppose xn =
∑n

j=0 cjPj(x) show that cn = 2n(n!)2/(2n)!.

11. Use the method of series solutions to find the power series expansion of (1 + x)a where a is any
real number. Hint: Find an ODE satisfied by the function.
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