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Behaviour of Dn(t) and inadequacy of mere continuity!∫ π

−π

|Dn(t)|dt

decays as n → ∞ but here our luck has forsaken us ! In fact the truth is:∫ π

−π

|Dn(t)|dt ∼ c log n, as n → ∞

for some positive constant c. And we see that there is no way to salvage the argument. Indeed as we
know, pointwise convergence fails for functions that are merely continuous.

Expanding the numerator in the Dirichlet kernel we get a sum of two terms:

Dn(θ) =
1

2π
(cosnθ + sinnθ cot(θ/2))

Likewise the integral (1.14) splits into a sum of two integrals:

Sn(f, x)− f(x) = (2π)−1
{∫ π

−π

cosnt ∆(t, x)dt+

∫ π

−π

sinnt (cot
t

2
)∆(t, x)dt

}
(1.15)

where ∆(x, t) = f(x− t)− f(x).

The Riemann-Lebesgue lemma The first of the two integrals on the Right hand side of (1.15) is
easy to deal with in view of the following result known as the Riemann-Lebesgue lemma.

Theorem: If g ∈ L1[a, b] then we have

lim
n→∞

∫ b

a

cosnt g(t)dt = 0, lim
n→∞

∫ b

a

sinnt g(t)dt = 0 (1.16)

We shall prove the Riemann-Lebesgue lemma later and we return to equation (1.15) of the previous
slide and observe that

lim
n→∞

∫ π

−π

cosnt ∆(t, x)dt = 0

So to complete the proof that Sn(f, x) −→ f(x) as n → ∞ all we need is to secure that

lim
n→∞

∫ π

−π

sinnt cot(
t

2
)∆(t, x)dt = 0 (1.17)

Exercise: The function defined on [−π, π] via F (t) = cot( t
2
)− 2

t
if t ̸= 0 and F (0) = 0 is continuous

and so by Riemann Lebesgue lemma

lim
n→∞

∫ π

−π

F (t) sinntdt = 0.

Adding and subtracting 2/t in the integral (1.17) and using the above, all we need to do now is to
prove the following:

lim
n→∞

∫ π

−π

t−1 sinnt (f(x− t)− f(x))dt = 0 (1.18)

In order to establish (1.18) we need some additional hypothesis on the function f(x). Just assuming
continuity would not suffice and it is here that the notion of Hölder continuity comes into play.
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Definition: A function f : R −→ R is said to be of Hölder class α > 0 if there is a constant L > 0
such that

|f(x)− f(y)| ≤ L|x− y|α, x, y ∈ R.

Exercise: Show that if f is of Hölder class α > 1 then f is constant. Functions of Hölder class α = 1
are called Lipschitz functions .

We are now ready to state and complete the proof of the basic convergence theorem.

Theorem: Suppose f : R −→ R is 2π periodic and Hölder continuous to order α > 0 then the
Fourier series of f(x) converges pointwise everywhere to f(x).

Well, all we need is to show that:

lim
n→∞

∫ π

−π

t−1(f(x− t)− f(x)) sin(nt) dt = 0

We split the integral as (again with ∆(t, x) = f(x− t)− f(x)):∫ π

−π

t−1∆(t, x) sin(nt) dt =

∫
|t|<δ

t−1∆(t, x) sin(nt) dt+

∫
δ≤|t|≤π

t−1∆(t, x) sin(nt) dt.

We use the Hölder continuity in the first piece.∣∣∣ ∫ π

−π

t−1∆(t, x) sin(nt) dt
∣∣∣ =

∣∣∣ ∫
|t|<δ

t−1∆(t, x) sin(nt) dt+

∫
δ≤|t|≤π

t−1∆(t, x) sin(nt) dt
∣∣∣

≤ L

∫
|t|<δ

dt

|t|1−α
+
∣∣∣ ∫

δ≤|t|≤π

t−1∆(t, x) sinnt dt
∣∣∣

≤ 2L

α
δα +

∣∣∣ ∫
δ≤|t|≤π

t−1∆(t, x) sinnt dt
∣∣∣

Now let ϵ > 0 be arbitrary. Select the above δ > 0 such that 2Lα−1δα < ϵ/2 and we have∣∣∣ ∫ π

−π

t−1∆(t, x) sin(nt) dt
∣∣∣ < ϵ

2
+
∣∣∣ ∫

δ≤|t|≤π

t−1∆(t, x) sinnt dt
∣∣∣

By Riemann Lebesgue lemma, there is an n0 such that second piece is less than ϵ/2 for all n > n0.
The proof is thereby complete.

Theorems of K. Weierstrass and N. N. Luzin We recall two important approximation theorems
from analysis. The first is classic namely, the Weierstrass’s approximation theorem :

Theorem 6: Continuous functions on a closed bounded interval [a, b] can be uniformly approximated
by polynomials. In other words given a continuous function f ∈ C[a, b] and ϵ > 0, there exists a
polynomial P such that

sup
a≤x≤b

|f(x)− P (x)| < ϵ

We now state the theorem of Luzin :
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Theorem 7: If f ∈ L1[a, b] and ϵ > 0 then there exists a continous function g ∈ C[a, b] such that

∥f − g∥ < ϵ.

Proof of the Riemann Lebesgue lemma: The proof proceeds in four easy steps delineated below.
Let g ∈ L1[a, b]. Let ϵ > 0 be arbitrary.

(i) Verify the Riemann Lebesgue lemma for the case g(t) = tk and hence for all polynomials.

(ii) By Luzin’s theorem, we select a continuous function h such that∫ b

a

|g(t)− h(t)|dt < ϵ/3.

(iii) By Weierstrass’ approximation theorem, we select a polynomial P (t) such that

sup
a≤t≤b

|h(t)− P (t)| < ϵ

3(b− a)
.

So that ∫ b

a

|g(t)− P (t)|dt < 2ϵ/3.

(iv) Finally, ∣∣∣ ∫ b

a

g(t) sinnt dt
∣∣∣ ≤

∣∣∣ ∫ b

a

(g(t)− P (t)) sinnt dt
∣∣∣+ ∣∣∣ ∫ b

a

P (t) sinnt dt
∣∣∣

≤
∫ b

a

|g(t)− P (t)|dt+
∣∣∣ ∫ b

a

P (t) sinnt dt
∣∣∣

By step (i) there is an n0 such that for all n ≥ n0 the second piece in the last expression is less
than ϵ/3 and together with step (iii) we get that∣∣∣ ∫ b

a

g(t) sinnt dt
∣∣∣ < ϵ, n ≥ n0.

The proof is thereby completed.

The issue with continuous functions Question: If f (x) is merely assumed to be continuous does
the above result hold ? This was believed to be so by several mathematicians including Dirichlet until
Paul Du Bois Reymond after several abortive attempts at proving it, produced a counter example in
1875 ! Using ideas from set topology one can show that a majority of continuous functions display
such errant behaviour. The simplified proof given by Stephan Banach is available in most texts. We
shall discuss this later in the course.

An example: Let us look at a simple case where this theorem is applicable. Consider the function

f(x) = |x|, |x| ≤ π

extended as a 2π periodic function. Sketch the graph of the function and check that the function is
Lipschitz. Since the function is an even function,

bn =
1

π

∫ π

−π

f(x) sinnx dx = 0.
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Exercise: Determine all the Fourier coefficients using formulas (1.4)-(1.5) and deduce that

|x| = π

2
−

∞∑
k=1

4 cos(2k − 1)x

π(2k − 1)2

What do you get when x = 0?
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