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We record here the three defining properties of Pk(x). Note that k = 0, 1, 2, . . . .

1. Pk(x) is a polynomial of degree k

2. Pk(x) satisfies the Legendre Equation:

(1− x2)P ′′
k (x)− 2xP ′

k(x) + k(k + 1)Pk(x) = 0

3. Pk(1) = 1.

It is clear that Pk(x) is an odd function if k is odd and an even function if k is even. Also

P0(x) = 1

Theorem (Orthogonality Properties of Legendre Polynomials): If k ̸= l then Pk(x) and Pl(x)
are orthogonal in the following sense: ∫ 1

−1

Pk(x)Pl(x)dx = 0.

To prove this we begin with the differential equations

(1− x2)P ′′
k − 2xP ′

k + k(k + 1)Pk = 0 (5.8)

and
(1− x2)P ′′

l − 2xP ′
l + l(l + 1)Pl = 0 (5.9)

We shall write these equations can be written in a more following convenient form known as self-adjoint
form.

d

dx

(
(1− x2)P ′

k

)
+ k(k + 1)Pk = 0 (5.10)

and
d

dx

(
(1− x2)P ′

l

)
+ l(l + 1)Pl = 0 (5.11)

Multiply (5.10) by Pl, (5.11) by Pk, subtract and integrate over [−1, 1]. Integration by parts would
confirm that

(k(k + 1)− l(l + 1))

∫ 1

−1

Pk(x)Pl(x)dx = 0.

Since k ̸= l and are non-negative integers, the factor k(k+1)− l(l+1) ̸= 0 and the proof is complete.
Exercise: Explain what happens if k and l are not non-negative integers.

Theorem The Legendre polynomials {P0(x), P1(x), . . . , Pn(x), . . . } form a complete orthogonal sys-
tem. The completeness follows immediately from the Weierstrass approximation theorem.
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Theorem (Fundamental Orthogonality Lemma): Suppose V is a vector space endowed with
inner product with respect to which {v0, v1, v2, . . . } and {w0, w1, w2, . . . } are two orthogonal systems
of non-zero vectors. Further assume that

span(v0, v1, . . . , vk) = span(w0, w1, . . . , wk), for every k = 0, 1, 2 . . .

Then, for certain scalars ck (k = 0, 1, 2 . . . ),

vk = ckwk, for every k = 0, 1, 2 . . .

Proof is an Exercise. First think of what happens in ordinary Euclidean spaces like Rn. Geometrical
considerations suggests the proof. It is an immediate corollary from this result that if 1, x, x2, . . . is
subjected to the Gram-Schmidt process with respect to the usual inner product in L2[−1, 1] the result
is the sequence

P0(x)

∥P0(x)∥
,

P1(x)

∥P1(x)∥
,

P2(x)

∥P2(x)∥
, . . .

Exercise: Consider the sequence of polynomials

Qn(x) =
dn

dxn
(x2 − 1)n.

Show that Qn(x) has degree n for every n. Further show that the sequence is orthogonal with respect
to weight 1 namely, ∫ 1

−1

Qn(x)Qm(x)dx = 0, m ̸= n.

From this infer the following result:

Pn(x) = cnQn(x), for every n = 0, 1, 2 . . .

for a certain sequence of constants {cn}.

Rodrigues’ Formula: Compute the constants cn in the last slide by evaluating Qn(1). Deduce the
following formula due to Olinde Rodrigues

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (5.12)

For more information on the work of Rodrigues see the Book Review by W. P. Johnson, in the
American Math. Monthly, Volume 114, Oct 2007, 752-758.

Exercises:

1. Compute
∫ 1

−1
(Pn(x))

2dx

2. Show that
∫ 1

−1
(1− x2)(P ′

n(x))
2dx = 2n(n+1)/(2n+1). Hint: Multiply the Diff. Eqn by Pn and

integrate by parts.

3. Use Rodrigues formula to prove that the Legendre polynomial of degree n has precisely n distinct
roots in the open interval (−1, 1). Use Rolle’s theorem. Note: The roots were used by Gauss
in 1814 in his famous quadrature formula. See the discussion on pp. 56-69 of S. Chandasekhar,
Radiative transfer, Dover Publications, Inc., New York, 1960.

4. Show that the Legendre polynomials satisfy the three term recursion formula

(n+ 1)Pn+1 − x(2n+ 1)Pn + nPn−1 = 0.
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