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27 Vibrations of a circular membrane. Bessel expansion theorem
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We now separate the radial and angular variables by setting

u(r, θ) = v(r) cosnθ,

where n must be an integer owing to 2π periodicity.
Exercise:

3. The function v(r) satisfies
r2v′′ + rv′ + (k2r2 − n2)v = 0 (5.9)

Check that this is the Bessel’s equation after a rescaling of the variable r.

The indicial for the equation is ρ2 − n2 and only the positive index gives a solution which is finite
at the origin. Since r = 0 corresponds to the center of the membrane which always remains at finite
distance, the only physically tenable solution is Jn(kr).

The Bessel functions of the first kind Thus we see that our special solution is (recalling p = ck),

z(x, y, t) = Jn(kr)(A cos ckt+B sin ckt) cosnθ.

Since the membrane is clamped along the rim we see that the solution vanishes along r = 1 for all
values of θ and t. Thus the following boundary condition must be satisfied:

Jn(k) = 0. (5.10)

Thus the frequency k must be a zero of the Bessel’s function Jn(x) and we shall see later that there
is an infinite list of them. The frequencies therefore form a discrete set of values. The most general
solutions are then obtained from superpositions whose coefficients are determined via initial conditions
and Fourier Analysis. We illustrate this by means of an example where the oscillations are radial.

Radial vibrations of the circular membrane: Suppose the initial conditions, the value of z(x, y, 0)
as well as zt(x, y, 0), are radial functions (that is depends only on

√
x2 + y2 then so would the solutions.

Thus the term cosnθ would disappear (that is n = 0) and we have a sequence of solutions

J0(kr)(A cos ckt+B sin ckt),

where k runs through the discrete set of zeros of zeros of J0(x) say ζ1, ζ2, ζ3, . . . . The most general
solution is then

z(r, t) =
∞∑
j=1

J0(ζjr)(Aj cos cζjt+Bj sin cζjt) (5.11)

Setting t = 0 in z(x, y, t) as well as zt(x, y, t) we get the following pair of equations for determining
the coefficients Aj and Bj:

z(r, 0) =
∞∑
j=1

AjJ0(ζjr)

zt(r, 0) =
∞∑
j=1

CjJ0(ζjr)
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where Cj = Bjζjc.
In order to proceed further we need a result from Analysis called the Bessel expansion theorem.

We are obviously not equipped to prove this. The result is available for example in chapter 18 of
the authoritative work G. N. Watson, Treatise on the theory of Bessel functions, Second edition,
Cambridge University Press, 1958. See the historical introduction on pp. 577 - 579.

Theorem (Bessel Expansion Theorem): Suppose f(r) is a smooth function on [0, 1] then it
admits a Fourier-Bessel expansion

f(r) =
∞∑
j=1

AjJ0(ζjr)

The coefficients Aj are uniquely determined by the formula (due to Lommel)

Aj =
2

(J1(ζj))2

∫ 1

0

rf(r)J0(ζjr)dr. (5.12)

So the coefficients Aj and Bj appearing in the solution of the vibration problem can be recovered from
Lommel’s formula applied to the initial conditions z(r, 0) and zt(r, 0).

Orthogonality properties of Bessel’s functions: Exercises:

4. Write the Bessel’s ODE in self adjoint form. Check that the operator x d
dx

is scale invariant on
(0,∞). Well, divide the Bessel’s ODE by x and we get

xy′′ + y′ + (x− p2

x
)y = 0

which can be written as
d

dx
(xy′) + (x− p2

x
)y = 0

This is called the self-adjoint form of the equation.

5. Put ϕu(x) = Jp(xu) and check that(
x
d

dx

)(
x
d

dx

)
ϕu(x) + (x2u2 − p2)ϕu(x) = 0. (5.13)

6. Fix p ≥ 0 and ζ1, ζ2, ζ3, . . . be the list of zeros of Jp(x). Show that the family {Jp(ζjx) : n =
1, 2, 3, . . . } is orthogonal over the interval [0, 1] with respect to the weight function x. Warning:
The cases p = 0 and p > 0 have to be dealt with separately.

Having discussed the orthogonality of the functions Jp(ζjx) (j = 1, 2, 3, . . . ), there remains the com-
putation of ∫ 1

0

x(Jp(ζjx))
2dx (5.14)

since these are the Fourier coefficients in the Bessel expansion theorem.
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7. Let ζ be a zero of Jn(x). Multiply by 2xζJ ′
n(ζx) the ODE satisfied by Jn(ζx) and deduce that

2

∫ 1

0

(Jn(ζx))
2xdx = (J ′

n(ζ))
2 = (Jn+1(ζ))

2 (5.15)

This is a bit tricky. We shall discuss this as a guided set of exercises.

8. Deduce the formula of Lommel. We are not proving the Bessel expansion theorem. Only that if
the expansion exists and the functions involved are smooth we are deriving the formula for the
coefficients in a formal way.

9. Determine the Bessel expansion for the constant function 1. Hint: Use (xpJp(x))
′ = xpJp−1(x).

10. Show that

xn =
∞∑
j=0

2Jn(ζjx)

ζjJn+1(ζj)
. (5.16)

A very interesting proof of the orthogonality property of the Bessel functions suggested by physical
considerations is available on pp 324-325 of Lord Rayleigh, Theory of Sound, Vol - I, Dover, 1945.

Solutions to some exercises. Orthogonality of Jp(ζjx) (j = 1, 2, 3, . . . ) Let p ≥ 0 be fixed and
ζ1, ζ2, ζ3, . . . be the sequence of positive zeros of Jp(x) arranged in ascending order. These are simple
zeros (why?) and let us call

ϕj(x) = Jp(ζjx).

It is a routine calculation left to you to check that ϕj satisfies:(
x
d

dx

)2

ϕj(x) + (x2ζ2j − p2)ϕj(x) = 0.

To begin with let us assume p > 0 and multiply this equation by x−1ϕk(x) and integrate over [0, 1].
Note that since p > 0, the function x−1ϕk(x) is integrable over [0, 1] (why?). We get∫ 1

0

ϕk(x)
d

dx

(
xϕ′

j(x)
)
dx+ ζ2j

∫ 1

0

xϕj(x)ϕk(x)dx− p2
∫ 1

0

ϕj(x)ϕk(x)
dx

x
= 0

In the first of these integrals we perform an integration by parts:

−
∫ 1

0

xϕ′
k(x)ϕ

′
j(x)dx+ ζ2j

∫ 1

0

xϕj(x)ϕk(x)dx− p2
∫ 1

0

ϕj(x)ϕk(x)
dx

x
= 0

Explain why the boundary terms drop out. Now switch the roles of j, k and subtract the two equations
and we get:

(ζ2j − ζ2k)

∫ 1

0

xϕj(x)ϕk(x)dx = 0

Since ζj, ζk are distinct zeros we get at once the orthogonality of ϕj and ϕk with respect to the weight
xdx.

Now take up the case p = 0 where the equation for ϕj(x) simplifies to:(
xϕ′

j(x)
)′

+ xζ2j ϕj(x) = 0.

Multiply by ϕk(x) and integrate over [0, 1]. The rest of the argument is similar to the previous case.
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