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5. Sturm-Liouville Problems and PDEs. Generalized Fourier

expansions

What is special about the orthogonal system

1, cosx, sinx, cos 2x, sin 2x, . . .?

on L2[−π, π]. For example are there other interesting/useful orthogonal systems?

(1) On L2[−1, 1] we have the sequence of Legendre polynomials

P0(x), P1(x), P2(x), . . . ,

that form a complete orthogonal system.

(2) On L2(R) we have the family of Hermite functions that provide a complete orthogonal system.

General orthogonal systems of functions

Definition Assume that H is a separable Hilbert space and

B = {ϕ1, ϕ2, . . . , ϕn, . . . } (5.1)

is an orthogonal system of non-zero elements in H such that linear span of B is dense in H. Then
we say that B is a complete orthogonal system in H.

The result of chapter 2 can be expressed as saying

{1, cosx, sinx, cos 2x, sin 2x, . . . }

is a complete orthogonal system in L2[−π, π]. The literature on orthogonal system of functions is quite
vast and here is a reference which is by now quite classic.

G. Sansone, Orthogonal functions, Dover Publications, 1991.
A need for the study of such orthogonal systems of functions originated from several diverse parts

of mathematics:

(1) Approximation theory.

(2) Boundary value problems in partial differential equations

(3) Wavelets and image processing. See for example the discussion of Haar systems in the book of
Strichartz cited earlier (pp. 141-148).

(4) Probability theory. See for exampleK. R. Parthasarathy, Introduction to probability and measure,
Hindustan book agency, 2005.

(5) Problems in geometric function theory. See for instance Z. Nehari, Conformal Mappings, Dover,
1975, pp 239-265. Particularly pp 258-260 on the use of Tchebycheff polynomials of the second
kind.
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Let us consider a Hilbert space H with a complete orthogonal system (5.1). Usually one normalizes
the functions ϕn and works with the orthonormal system

ϕn

∥ϕn∥
, n = 1, 2, 3, . . . (5.2)

Given an element x ∈ H one knows that

x = c1ϕ1 + c2ϕ2 + · · ·+ cnϕn + . . . (5.3)

for a uniquely determined sequence of coefficients c1, c2, c3, . . . , called the Fourier coefficients of x
with respect to the given orthogonal system. There is a corresponding Bessel’s inequality and Parseval
formula associated with the series (5.3). The series (5.3) converges to x in the sense that

lim
n→∞

(c1ϕ1 + c2ϕ2 + · · ·+ cnϕn) = x

in the Hilbert space norm. It is clear that the coefficients cn in the series (5.3) are given by

cn =
⟨x, ϕn⟩
⟨ϕn, ϕn⟩

(5.4)

We shall return to these general discussions on Hilbert spaces and move on to an application to
boundary value problems in partial differential equations.

Vibrations of the circular membrane Let us consider a circular membrane clamped along its
rim and set into vibration. The mean position being along the x− y plane and the origin at the center
of the membrane. At time t let the displacement from the mean position be z(x, y, t). It is well known
(see Kreyszig, Adv. Engg. Math, 8th edition, pp 616-618) that z satisfies the wave equation

c2
(∂2z

∂x2
+

∂2z

∂y2

)
=

∂2z

∂t2
(5.5)

where c denotes the wave speed. We seek a special solution of the form

z = (A cos pt+B sin pt)u(x, y). (5.6)

More general solutions can then be determined by superposition. Substituting the Ansatz (5.6) in the
PDE we get

c2(A cos pt+B sin pt)∆u = −p2(A cos pt+B sin pt)u

Helmholtz Equation or the Reduced Wave Equation from which we conclude that u must
satisfy the equation

∆u+ k2u = 0, (5.7)

where k = p/c. This equation is known as the Helmholtz’s equation or the reduced wave equation.

Exercises:

1. Write the Laplace operator ∆ in plane polar coordinates.

2. Write the Laplace operator in R3 in spherical polar coordinates. Computation gets very UGLY
unless you use some cleverness.

The Helmholtz’s equation in polar coordinates reads

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+ k2u = 0. (5.8)
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Separation of variables We now separate the radial and angular variables by setting

u(r, θ) = v(r) cosnθ,

where n must be an integer owing to 2π periodicity.

Exercise:

3. The function v(r) satisfies
r2v′′ + rv′ + (k2r2 − n2)v = 0 (5.9)

Check that this is the Bessel’s equation after a rescaling of the variable r.

The indicial for the equation is ρ2 − n2 and only the positive index gives a solution which is finite
at the origin. Since r = 0 corresponds to the center of the membrane which always remains at finite
distance, the only physically tenable solution is Jn(kr).

The Bessel functions of the first kind Thus we see that our special solution is (recalling p = ck),

z(x, y, t) = Jn(kr)(A cos ckt+B sin ckt) cosnθ.

Since the membrane is clamped along the rim we see that the solution vanishes along r = 1 for all
values of θ and t. Thus the following boundary condition must be satisfied:

Jn(k) = 0. (5.10)

Thus the frequency k must be a zero of the Bessel’s function Jn(x) and we shall see later that there
is an infinite list of them. The frequencies therefore form a discrete set of values. The most general
solutions are then obtained from superpositions whose coefficients are determined via initial conditions
and Fourier Analysis. We illustrate this by means of an example where the oscillations are radial.
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