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A formula of Srinivasa Ramanujan As a last item in this chapter we shall discuss a remarkable
formula discovered by the great Indian Mathematician Srinivasa Ramanujan.

(1) Robert Kanigal, The Man who knew infinity: Life and Genius of Ramanujan, Scribner, 1991.

(2) Gamma function featured prominently in the works of Ramanujan.

(3) The formula:∫ ∞

−∞
|Γ(a+ it)|2 exp(−itξ)dt =

√
πΓ(a)Γ

(
a+

1

2

)
cosh−2a(ξ/2), a > 0.

Ramanujan, Messenger of Mathematics, 1915. Cited in G. H. Hardy, Collected papers, Volume
7, p. 98ff. In the next few slides we shall prove this remarkable Fourier transform formula of
Ramanujan.

We first show that the function
t 7→ |Γ(a+ it)|2

decays very rapidly. For this we need to recall the Stirling’s approximation formula:

n! ∼ nne−n
√
2πn, as n → ∞.

This formula given by James Stirling in his Methodus Differentialis in 1730 is unarguably the most
remarkable formulas in classical analysis. The corresponding version for the gamma function reads:

Γ(x+ 1) ∼ xxe−x
√
2πx, as x → ∞.

We need to look at the behaviour of the gamma function Γ(z) for values of z lying in the region Rδ in

the complex plane given by |Arg z| < π − δ and |z| >> 1. In this region the zz+
1
2 is defined using the

principal branch of the logarithm namely

zz+
1
2 = exp

(
(z +

1

2
) log z

)
, log z = ln |z|+ iArg z.

The Stirling’s formula in the complex domain now states that

lim
z→∞, z∈Rδ

Γ(z + 1)
(
zz+

1
2 e−z

√
2π

)−1

= 1.

Reference for this is B. C. Carlson, Special functions of applied mathematics, Academic Press 1977,
pp. 45-47. Since

|Γ(a+ it)| = |Γ(a+ it+ 1)|(a2 + t2)−1/2,

it suffices to show that |Γ(a + it + 1)| is in the Schwartz class and we are ready to use the Stirling’s
formula. The vertical line {a + it : t ∈ R} certainly lies in the region Rδ for any choice of δ. Let us
look at the approximation to

√
2πΓ(a+ it+ 1) given by Stirling’s formula:

exp((a+ it+
1

2
) log(a+ it)− (a+ it))

To estimate the absolute value of this we need to look at exp of the real part of

(a+ it+
1

2
) log(a+ it)− (a+ it)
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Ignoring the multiplicative constant exp(−a) we are left with estimating

exp
(
(a+

1

2
) ln |a+ it| − t Arg(a+ it)

)
Clearly, as t −→ +∞,

exp
(
(a+

1

2
) ln |a+ it|

)
= ta+

1
2O(1).

while the other factor
exp

(
− tArg(a+ it)

)
= exp(−tπ/2)O(1)

since Arg(a+ it) tends to π/2 as t → ∞. This proves that |Γ(a+ it)| decays exponentially fast whereby
we can try to compute the Fourier transform of |Γ(a+it)|2 directly using the definition. The behaviour
as t −→ −∞ is similar and is left as an exercise. Next, observe that since a and t are real,

|Γ(a+ it)|2 = Γ(a+ it)Γ(a− it) = Γ(2a)B(a+ it, a− it).

B(p, q) denotes the beta function and we have used the beta-gamma relation. Recall that

B(p, q) =

∫ 1

0

tp−1(1− t)q−1dt, Re p > 0,Re q > 0.

Setting t = (1 + eu)−1 in the integral gives after a little algebra,

B(p, q) =

∫ ∞

−∞

exp( qu
2
− pu

2
) du

(eu/2 + e−u/2)p+q

Exchanging the roles of p and q and using the symmetry of the beta function we get

B(p, q) =

∫ ∞

−∞

exp( qu
2
− pu

2
) + exp(pu

2
− qu

2
)

(eu/2 + e−u/2)p+q

du

2

=

∫ ∞

−∞

exp(qu− pu) + exp(pu− qu)

(eu + e−u)p+q
du

we use this with p = a+ it and q = a− it and we get that

|Γ(a+ it)|2 = Γ(2a)

∫ ∞

−∞

e2iut + e−2iut

(eu + e−u)2a
du

We now multiply this by exp(−itξ) and integrate with respect to t to compute the Fourier transform
of |Γ(a+ it)|2 as an iterated integral:

I(ξ) = Γ(2a)

∫ ∞

−∞
dt

∫ ∞

−∞

eit(2u−ξ) + e−it(2u+ξ)

(eu + e−u)2a
du

It is very tempting to switch the order of integrals:

Γ(2a)

∫ ∞

−∞

du

(eu + e−u)2a

∫ ∞

−∞
(eit(2u−ξ) + e−it(2u+ξ))dt
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We see the emergence of the problem of coping with oscillatory integrals, as was the case with the
Fourier inversion theorem. To get around the difficulty we must resort to the exp(−ϵt2) trick! namely,

I(ξ) = lim
ϵ→0

Γ(2a)

∫ ∞

−∞
dt

∫ ∞

−∞

eit(2u−ξ)−ϵt2 + e−it(2u+ξ)−ϵt2

(eu + e−u)2a
du

We may now safely switch the order of integrals and

I(ξ) = lim
ϵ→0

Γ(2a)

∫ ∞

−∞

du

(eu + e−u)2a

∫ ∞

−∞
(eit(2u−ξ)−ϵt2 + e−it(2u+ξ)−ϵt2)dt

= lim
ϵ→0

Γ(2a)

√
π

ϵ

∫ ∞

−∞

exp−((2u− ξ)2/4ϵ)

(eu + e−u)2a
+ lim

ϵ→0
Γ(2a)

√
π

ϵ

∫ ∞

−∞

exp−((2u+ ξ)2/4ϵ)

(eu + e−u)2a

The change of variables 2u ∓ ξ =
√
4ϵv in the integrals now gives the closed form expression for the

Fourier transform:

I(ξ) = 2πΓ(2a)(eξ/2 + e−ξ/2)−2a = 21−2aπΓ(2a) cosh−2a(ξ/2)

To see how this is the same as Ramanujan’s formula we need the Duplication formula of Legendre.

√
πΓ(2a) = 22a−1Γ(a)Γ(a+

1

2
).

We have completed the proof of Ramanujan’s formula. As a reference for this material:

(1) D. Chakrabarty and G. K. Srinivasan, On a remarkable formula of Ramanujan, Archiv der
Mathematik, 99, 125–135 (2012).

(2) G. K. Srinivasan, A unified approach to the integrals of Mellin-Barnes-Hecke type, Expositiones
Math., 31, 151-168 (2013).

In the second reference you will find many other integrals of a similar kind evaluated using a general-
ization of the exp(−ϵt2) trick.

Some thoughts of the Duplication formula For completeness let us sketch a proof of the dupli-
cation formula. Start with the formula

B(p, p) =

∫ 1

0

tp−1(1− t)p−1dt = 2

∫ π/2

0

sin2p−1 θ cos2p−1 θdθ

To use the double angle formula we rewrite this as

B(p, p) = 21−2p

∫ π/2

0

(2 sin θ cos θ)2p−1(2dθ)

Setting 2θ = ϕ we get

B(p, p) = 21−2p

∫ π

0

sin2p−1 ϕdϕ = 22−2p

∫ π/2

0

sin2p−1 ϕ cos2(1/2)−1 ϕdϕ = 21−2pB(p, 1/2).
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Now assume that p is real and positive. Using the beta-gamma relation:

Γ(p)

Γ(2p)
= 21−2pΓ(p)Γ(1/2)

Γ(p+ 1
2
)

where we have used the self-evident fact that Γ(a) ̸= 0 if a is real positive. Cancelling Γ(p) and
rearranging gives for for p real positive,

√
πΓ(2p) = 22p−1Γ(p)Γ(p+

1

2
).

Using the identity theorem from complex analysis we conclude that the result evidently extends to
complex p, whenever both sides are defined. The Duplication formula proved by Legendre in 1809 and
generalized by Gauss in 1812 may seem mysterious but to de-mystify it let us recall the Reflection
formula of Euler:

Γ(z)Γ(1− z) = π/ sin(πz)

The formula says that The gamma function is ”one half of the sine function” in a multiplicative sense.
So any factorization formula for sine is likely to have a gamma analogue. Well, the sine function
f(x) = sinπx has the factorization

f(2x) = 2f(x)f(x+
1

2
)

with a striking similarity with the duplication formula:

Γ(2x) = 22x−1Γ(x)Γ(x+
1

2
)

For more on these matters see R. Goenka and G. K. Srinivasan, Gamma function and its functional
equations, Resonance, 26, 367-386 (2021).
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