Fourier Analysis and its Applications Prof. G. K. Srinivasan Department of Mathematics Indian Institute of Technology Bombay

23 Exercises on Fourier transform

1. Use Parseval formula to compute the integral

$$\int_{-\infty}^{\infty} \frac{4\sin^2 \xi d\xi}{\xi^2}$$

Use the fact that $||f||^2 = (2\pi)^{-1} ||\widehat{f}||^2$ where, the norms are all L^2 norms.

2. Use the convolution theorem to determine the convolution $f_s * f_t$ where $f_s(\xi)$ is the Cauchy distribution:

$$f_s(\xi) = \frac{1}{\pi} \frac{s}{\xi^2 + s^2}$$

The Cauchy distribution $f_s(\xi)$ is the Fourier transform of some known function $F_s(x)$. By the inversion theorem can you easily write $\widehat{f_s}$?

3. Compute the Fourier transform of $(\cosh ax)^{-1}$ where a is real positive.

Well, the problem amounts to computing the integral

$$I(\xi) = \int_{-\infty}^{\infty} \frac{\cos \xi x \, dx}{\cosh ax}$$

You could use complex analysis to do this. Usually when you have hyperbolic functions in the denominator it is convenient to use rectangular contours. Select a rectangular contour with vertices -R, R, R+it and -R+it where t has to be selected appropriately so that the integral over the top edge is a multiple of the integral you want. You need to show that the contributions from the vertical sides go to zero.

There is a simple pole inside the contour at the point $z = i\pi/2a$.

4. Suppose $f, g \in L^1(\mathbb{R})$. Show that the convolution f * g is again in $L^1(\mathbb{R})$ and further

$$||f * g|| \le ||f|| ||g||$$

where the norms are all L^1 norms. Can something more be said if the functions are non-negative?

Remark: The above is a special case of a general result called Young's convolution theorem. The latter states that if $f \in L^p(\mathbb{R})$ and $g \in L^q(\mathbb{R})$ such that $p^{-1} + q^{-1} = 1 + r^{-1}$ for some $r \geq 1$ then $f * g \in L^r(\mathbb{R})$. Here p = q = r = 1. Note that if p = q = 2 then $r = \infty$ and the theorem says that the convolution of two functions in $L^2(\mathbb{R})$ is a bounded measurable functions. Prove this theorem. First assume that $f, g \in \mathcal{S}$ and show that for all $x \in \mathbb{R}$:

$$|(f * g)(x)| \le ||f||_2 ||g||_2.$$

Can you now use an approximation argument such as density if S in $L^2(\mathbb{R})$?

For fixed $x \in \mathbb{R}$, look at the map $(f,g) \mapsto (f * g)(x)$ from $\mathcal{S} \times \mathcal{S} \longrightarrow \mathbb{R}$. Can you prove that this map is continuous with respect to the L^2 norm?

5. Let f(t) be the characteristic function of [-1,1]. Find explicitly f*f and show that it is continuous. It is a fact that the convolution of two characteristic functions of bounded measurable sets is continuous. Show that f*f*f is of class C^1 . In fact if f_j (for $j=1,2,\ldots,k$) is a set of characteristic functions of intervals I_j then $f_1*f_2*\cdots*f_k$ is of class C^{k-2} .

- 6. Observe that $(\sin x)/x$ is not in $L^1(\mathbb{R})$ but it is in $L^2(\mathbb{R})$. Find its Fourier transform by proceeding formally and then resorting to the $e^{-\epsilon x^2}$ trick. Does the result match with what you would expect if you blindly apply the inversion theorem?
- 7. Suppose f and g are two functions in $L^1(\mathbb{R})$ such that f vanishes outside an interval I and g vanishes outside an interval J then prove that f * g vanishes outside the interval I + J. In other words

$$\mathrm{supp}\ (f*g)\subset\mathrm{supp}\ f+\mathrm{supp}\ g$$

Of course one would wonder if equality holds. In fact the inclusion can be strict. What is true is the following result known as the *Titchmarsh convolution theorem*:

ch. supp
$$(f * g) = \text{ch. supp } f + \text{ch. supp } g$$

where ch. supp f denotes the convex hull of the support of f.

8. Let $\phi \in \mathcal{S}$ and real valued. Define

$$\Phi(x) = \sum_{n = -\infty}^{\infty} \phi(x + 2\pi n)$$

Evidently $\Phi(x)$ is periodic with period 2π . Prove that $\Phi(x)$ is smooth.

Show that the Fourier coefficients of $\Phi(x)$ is given by

$$a_k = \sum_{n=-\infty}^{\infty} \int_{-\pi+2\pi n}^{\pi+2\pi n} \phi(u) \cos ku du.$$

Justify the exchange of summation and integrals. So the Fourier coefficients are expressed in terms of the real and imaginary parts of $\widehat{\phi}(k)$. What do you deduce from the basic convergence theorem of chapter 1? The result is known as the *Poisson summation formula*.