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The Heat equation again. The heat kernel. Let us now solve the initial value problem for the
heat equation in the half-plane

ut − uxx = 0, u(x, 0) = f(x).

Let us assume to begin with f(x) ∈ S and compute the Fourier transform with respect to x:

d

dt
(û(ξ, t)) + ξ2û = 0, û(ξ, 0) = f̂(ξ).

This is an ODE in û where ξ is regarded as a parameter.

û(ξ, t) = C exp(−tξ2)

Putting in t = 0 we see that C = f̂(ξ). Thus

û(ξ, t) = f̂(ξ) exp(−tξ2)

Observe that exp(−tξ2) is the Fourier transform with respect to x, of the function

G(x, t) =
1√
4πt

exp(−x2/4t)

Appealing to the convolution theorem,

û(ξ, t) = f̂(ξ)Ĝ(ξ, t) = Ĝ ∗ f(ξ, t)

Thus we have

u(x, t) =
1√
4πt

∫ ∞

−∞
f(s) exp(−(x− s)2/4t) ds

The function G(x, t) called the heat kernel,plays a crucial role in Probability theory. The formula
was derived assuming that the initial data f(x) is in S. However it makes perfect sense even if f(x)
is of exponential type ! Exercises:

29. Solve the heat equation ut − uxx = 0 with initial condition u(x, 0) = x2.

30. Solve the heat equation ut − uxx = 0 with initial condition u(x, 0) = cos(ax). What about the
solution with initial condition sin(ax).

31. Suppose the initial condition is a continuous function that is positive at say on (−1, 1) but zero
outside [−1, 1] then the solution is positive at all points u(x, t) no matter how large x is and how
small t > 0 is. Thus the effect of initial heat distribution in [−1, 1] is instantaneously propagated
throughout space. Is this physically tenable? Philosophical Question: How is it that the equation
nevertheless is used to explain physical phenomena??

Airy’s Function: Airy studied the function that bears his name in the course of his investigations
on the intensity of light in the neighborhood of a caustic (See G. N. Watson’s treatise, p. 188). The
work dates back to 1838. Before commencing on the discussion of Airy’s function, here is a pointer to
the interesting life of Sir George Biddell Airy:
Sir George Biddell Airy, K. C. B, Ed., Wilfred Airy, CUP, 1896. Another interesting account I had
read long ago was by Patrick Moore but I am unable to locate it at the moment.

Airy’s equation is the ODE

y′′(x)− 1

3
xy = 0. (4.15)

G. N. Watson, A treatise on the theory of Bessel functions, Second Edition, CUP, 1958
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Some preliminaries on conditionally convergent integrals: Before taking up Airy’s equation
let us recall a few useful methods of dealing with conditionally convergent intgerals. The most basic
integral is ∫ ∞

0

sinxdx

x
(4.16)

which is known to converge to π/2. Let us split the integral into two parts∫ 1

0

sinxdx

x
+

∫ ∞

1

sinxdx

x

The first piece is the integral of a continuous function on a closed bounded interval and so it exists.
We must now turn to the second integral. Let us denote by I the second integral namely

I =

∫ ∞

1

sinxdx

x
= lim

R→∞

∫ R

1

sinxdx

x
= lim

R→∞

∫ R

1

− d

dx
(cosx)

dx

x

Integrating by parts we get

I = lim
R→∞

(∫ R

1

−cosxdx

x2
+ cos 1− cosR

R

)
= cos 1−

∫ ∞

1

cosxdx

x2

The last displayed integral evidently converges absolutely !
Let us now take another example which is important since the Airy’s function will be an integral

of a similar but more complicated form. Consider the Fresnel integral:∫ ∞

0

cosx2dx

Again we need to discuss convergence of only the integral from [1,∞) which we call J . We make the
change of variables x2 = u and we get

J =

∫ ∞

1

cosudu

2
√
u

Now the same idea of integrating by parts would show that J converges. Exercise: Show that the
integrals I and J do not converge absolutely.

Integral representation of Airy’s function: We would like to subject Airy’s equation to Fourier
transform. But the main question is whether the equation has solutions which are amenable to Fourier
transforms? Since Airy’s equation (after a trivial change of variables x 7→ −x)

y′′(x) +
1

3
xy = 0. (4.15)′

does not contain the y′ term, the Wronskian of any two linearly independent solutions is a non-
zero constant. So if one solution decays at infinity along with its derivative then the second linearly
independent solution must grow rapidly at infinity. So at most one solution (upto scalar multiples)
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can be subjected to Fourier transforms. We leave aside the question of whether there is such a solution
and proceed formally. Taking the Fourier transform of (4.15) we get the ODE:

ξ2ŷ − 1

3i

dŷ

dξ
= 0 (4.16)

Integrating this linear ODE we get
ŷ = exp(iξ3)

Now we use the Fourier inversion theorem and obtain, ignoring multiplicative constants,

y(x) =

∫
R
exp(ixξ + iξ3)dξ (4.17)

which can be written as

y(x) =

∫
R
cos(xξ + ξ3)dξ (4.18)

The problem is that the integral (4.18) is a conditionally convergent integral and the steps leading to
(4.18) are suspect. We could however directly try and verify that the integral (4.18) is a solution of
the ODE but that too is problematic since differentiation under the integral sign is not easy to justify.
Let us now make the change of variables xξ + ξ3 = s. The function xξ + ξ3 is monotone increasing on
say [r,∞) and on this interval the change of variables is licit. The integral transforms into

y(x) =

∫ ∞

R

cos sds

x+ 3ξ2
(4.19)

where ξ is a function of s. Clearly ξ(s) → ∞ as s → ∞. Let us integrate by parts the integral (4.19)
and we are led to discussing the convergence of

6

∫ ∞

R

ξ(s)(sin s)ξ′(s)ds

(x+ 3ξ2)2
= 6

∫ ∞

R

ξ(s)(sin s)ds

(x+ 3ξ2)3
(4.20)

Exercise: Write down the boundary terms arising from integration by parts.
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