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Theorem (Riemann-Lebesgue lemma for Fourier transforms): Suppose f ∈ L1(R), then f̂(ξ)
tends to zero as ξ −→ ±∞.

Proof: First imitate the above argument to show that if f is continuous on [−A,A] then

lim
ξ→±∞

∫ A

−A

f(x)e−ixξdx = 0.

Call the integral I and set x = y + π
ξ
and proceed as we did before. Use Luzin’s theorem to prove it

for all f ∈ L1[−A,A]. Now suppose f ∈ L1(R). Let ϵ > 0 be arbitrary. Select A > 0 such that∫
R−[−A,A]

|f(x)|dx < ϵ/2.

∣∣∣ ∫
R
f(x)e−ixξdx

∣∣∣ ≤
∣∣∣ ∫

R−[−A,A]

f(x)e−ixξdx
∣∣∣+ ∫

[−A,A]

f(x)e−ixξdx
∣∣∣

≤
∫
R−[−A,A]

|f(x)|dx+
∣∣∣ ∫

[−A,A]

f(x)e−ixξdx
∣∣∣

≤ ϵ/2 +
∣∣∣ ∫

[−A,A]

f(x)e−ixξdx
∣∣∣

Since we know that

∫
[−A,A]

f(x)e−ixξdx −→ 0, ξ → ±∞ there is a ξ0 > 0 such that for all |ξ| > ξ0,

we have
∣∣∣ ∫

[−A,A]

f(x)e−ixξdx
∣∣∣ < ϵ/2 and accordingly,

∣∣∣ ∫
R
f(x)e−ixξdx

∣∣∣ < ϵ

Estimates in L2 norm. We would like to get estimates for the Fourier transform in the L2 norm due
to the pleasant feature that L2(R) is a Hilbert space. However the argument is not so straightforward.

Theorem (The Parseval formula also known as Plancherel’s theorem): Suppose f(t) and
g(t) are in S then ∫ ∞

−∞
f(t)g(t)dt =

1

2π

∫ ∞

−∞
f̂(ξ)ĝ(ξ)dξ (4.11)

Again we need to employ the exp(−ϵξ2) trick. First, let us try to prove it directly:

RHS =

∫
R
dξ

∫
R2

f(x)g(y)e−iξ(x−y)dxdy

=

∫
R2

f(x)g(y)dxdy

∫
R
e−iξ(x−y)dξ
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This suggests introduction of the exp(−ϵξ2). We need the Fourier transform of the Gaussian along the
way:

RHS = lim
ϵ→0+

1

2π

∫ ∞

−∞
f̂(ξ)ĝ(ξ) exp(−ϵξ2)dξ

= lim
ϵ→0+

1

2π

∫
R2

f(x)g(y)dxdy

∫
R
exp(−iξ(x− y)) exp(−ϵξ2)dξ

= lim
ϵ→0+

1

2
√
πϵ

∫
R
f(x)dx

∫
R
g(y) exp(−(x− y)2/4ϵ)dy

In the inner integral put y = x+ 2
√
ϵz and we get

RHS = lim
ϵ→0+

1√
π

∫
R
f(x)dx

∫
R
g(x+ 2

√
ϵz)e−z2dz

Now appealing to the dominated convergence theorem we get the result.

Fourier transform as an operator on L2(R) Form the Plancherel’s theorem it immediately follows
taking f = g:

Theorem: If f ∈ S then

∥f∥2 =
1√
2π

∥f̂∥2 (4.12)

Theorem: The Fourier transform extends as a bounded linear operator on L2(R) and further it is a
linear isomorphism onto L2(R). To prove this result we use the fact that the space S is dense in L2(R).
We shall not prove this here. Now that we have established (4.12), let us denote by F : S −→ S the
Fourier transform as an operator on S. It is onto thanks to the inversion theorem. Observe that the
map F being linear, we get

∥Ff −Fg∥2 ≤
√
2π∥f − g∥2, f, g ∈ S,

and thanks to the inversion theorem,

∥F−1f −F−1g∥2 ≤
1√
2π

∥f − g∥2, f, g ∈ S.

which shows that F and F−1 are both uniformly continuous with respect to the L2 metric. We
now prove a general lemma on metric spaces:

Lemma: Suppose X is a complete metric space, Y is a dense subspace of X and T : Y −→ Y is a
uniformly continuous map then T extends continuously as a map X −→ X.
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Proof: Let x ∈ X and (yn) be a sequence of points of Y converging to X. Then the sequence T (yn)
is Cauchy since T is uniformly continuous. Thus T (yn) converges to say Tx ∈ X. We show that if
(yn) and (zn) are two sequences converging to x then the corresponding sequences T (yn) and T (zn)
both converge to the same limit. To see this interlace the sequences as

y1, z1, y2, z2, y3, z3, . . .

which evidently converges and the so the corresponding sequence

T (y1), T (z1), T (y2), T (z2), . . .

also converges and so its subsequences all converge to the same limit. Thus T (x) is unambiguously
defined. The continuity of the extension is an exercise.

Fourier transform as an operator on L2(R) Using the above result we see that the Fourier
transform which hitherto is defined as an operator from S onto itself extends as a continuous linear
map from L2(R) onto itself and satisfies the estimate

∥f∥2 =
1√
2π

∥f̂∥2, f ∈ L2(R) (4.13)

We now introduce the notion of convolution of two functions:

Definition (Convolution of two functions): Suppose f and g are two absolutely integrable func-
tions on R their convolution f ∗ g is the function defined by

(f ∗ g)(x) =
∫
R
f(y)g(x− y)dy.

Exercises: Check that f ∗ g = g ∗ f and that f ∗ g is absolutely integrable.

Theorem (The convolution theorem): Suppose f(t) and g(t) are both in S then so is their
convolution (f ∗ g)(t). Further

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ). (4.14)

We shall not prove that the convolution is in S. Observe the analogy with the corresponding result for
Laplace transforms that you may have seen in undergraduate courses on ordinary differential equations.

f̂ ∗ g(ξ) =

∫
R
e−ixξ(f ∗ g)(x)dx

=

∫
R
e−ixξdx

∫
R
f(y)g(x− y)dy

=

∫
R
f(y)dy

∫
R
e−ixξg(x− y)dx

Put x− y = z in the inner integral and we get

f̂ ∗ g(ξ) =
∫
R
f(y)dy

∫
R
e−i(y+z)ξg(z)dz = f̂(ξ)ĝ(ξ).
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The Heat equation again. The heat kernel. Let us now solve the initial value problem for the
heat equation in the half-plane

ut − uxx = 0, u(x, 0) = f(x).

Let us assume to begin with f(x) ∈ S and compute the Fourier transform with respect to x:

d

dt
(û(ξ, t)) + ξ2û = 0, û(ξ, 0) = f̂(ξ).

This is an ODE in û where ξ is regarded as a parameter.

û(ξ, t) = C exp(−tξ2)

Putting in t = 0 we see that C = f̂(ξ). Thus

û(ξ, t) = f̂(ξ) exp(−tξ2)
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