Fourier Analysis and its Applications Prof. G. K. Srinivasan Department of Mathematics Indian Institute of Technology Bombay 02 The basic convergence theorem **Remark:** We shall need some additional hypothesis on f(x) in order to establish any of these convergence results. By way of an analogy, recall from elementary calculus the problem of expressing a function f(x) as a Taylor series:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots$$
(1.2)

Let $C^{\infty}(\mathbb{R})$ be the class of infinitely differentiable functions on the real line. We know that even if $f(x) \in C^{\infty}(\mathbb{R})$, the function f(x) need not admit a representation of the form (1.2). However for a certain distinguished subclass of C^{∞} we do have a representation of the form (1.2) which is valid at least on some open interval (-R, R). Further, in this case we easily obtain the formula

$$a_n = \frac{1}{n!} f^{(n)}(0), \quad n = 0, 1, 2, \dots$$
 (1.3)

Question: What is the analogue of the pair (1.2)-(1.3) in the context of trigonometric series?

In order to obtain a formula for the coefficients in the series (1.1), let us assume that the series appearing in (1.1) is uniformly convergent so that the 2π periodic function f(x) is continuous. Term by term integration of (1.1) gives immediately

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx.$$
 (1.4)

Multiplying (1.1) by $\cos kx$ (respectively $\sin kx$) and integrating over $[-\pi, \pi]$ gives immediately

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx \tag{1.5}$$

Definition: Suppose f(x) is integrable on $[-\pi, \pi]$, we say the trigonometric series (1.1) is a *Fourier* series if the coefficients a_0, a_n, b_n (n = 1, 2, 3, ...) in (1.1) are given by (1.4)-(1.5).

Not all trigonometric series are Fourier series Note that if the series (1.1) is not sufficiently well-behaved as regards convergence, the validity of the deduction (1.4)-(1.5) is quite suspect !

In fact even if the series (1.1) converges point-wise everywhere to a sum function f(x), the coefficients may not be given by (1.4)-(1.5). One such example is the classic one (Fatou (1906)):

$$f(x) = \sum_{n=2}^{\infty} \frac{\sin nx}{\log n}.$$
(1.6)

The series (1.6) converges pointwise everywhere and even uniformly on $[\delta, 2\pi - \delta]$ for every $\delta > 0$. The sum f(x) is NOT Lebesgue integrable on $[-\pi, \pi]$. Indeed in 1875 Paul Du Bois Reymond established that if the sum of a trigonometric series is integrable in the Riemann sense then it is a Fourier series (that is its coefficients must be given by (1.4)-(1.5)). The result was extended in 1912 to Lebesgue integrable functions.

See the book of G. Bachman, L. Narici and E. Beckenstein, Fourier and wavelet analysis, Springer Verlag, 2000. (pp. 219-220).

The pointwise convergence theorem

From now on we shall only work with Fourier series of f(x) which is Lebesgue integrable on $[-\pi, \pi]$ namely when the coefficients a_0, a_n, b_n are given by (1.4)-(1.5).

Lemma 1.1:

$$1 + 2\cos\theta + 2\cos 2\theta + \dots + 2\cos n\theta = \frac{\sin(n\theta + \frac{\theta}{2})}{\sin(\frac{\theta}{2})}$$
(1.7)

Let us now prove the lemma by recalling a simple identity from trigonometry:

$$2\cos j\theta\sin(\theta/2) = \sin(j+\frac{1}{2})\theta - \sin(j-\frac{1}{2})\theta.$$

Set $j = 1, 2, \ldots, n$ and add. We get

$$2\sum_{j=1}^{n}\cos j\theta\sin(\theta/2) = \sin(n+\frac{1}{2})\theta - \sin(\frac{\theta}{2})$$

A little re-arrangement gives (1.7).

The Dirichlet Kernel As a preparation for the point-wise convergence theorem we shall obtain an integral expression for the finite sum

$$S_n(f,x) = a_0 + \sum_{j=1}^n (a_j \cos jx + b_j \sin jx)$$
(1.8)

Using the integrals (1.4)-(1.5) for the coefficients, the right hand side of (1.8) assumes the form:

$$S_n(f,x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \Big(1 + 2\cos(x-t) + 2\cos 2(x-t) + \dots + 2\cos n(x-t) \Big) dt.$$

We use the lemma that we just proved to get

$$S_n(f,x) = \int_{-\pi}^{\pi} f(t) D_n(x-t) dt.$$
 (1.9)

where we have denoted by $D_n(\theta)$ the following expression knows as the Dirichlet kernel

$$D_n(\theta) = \frac{1}{2\pi} \frac{\sin(n+\frac{1}{2})\theta}{\sin(\frac{\theta}{2})}$$
(1.10)

We make two simple observations:

(1) Suppose P and Q are any two periodic function on the real line with period 2c, then

$$\int_{-c}^{c} P(t)Q(x-t)dt = \int_{-c}^{c} P(x-t)Q(t)dt$$
(1.11)

Hint: Put x - t = s in the left hand side and break the resulting integral into three integrals namely, over the intervals [-c, x - c], [-c, c] and [c, x + c]. Now make the change of variables $s \mapsto s - 2c$ in the last of these three integrals.

(2) Integrate both sides of equation (1.7) in Lemma 2 and show that

$$\int_{-\pi}^{\pi} D_n(t)dt = 1.$$
 (1.12)

Using the simple observation (1.10) we re-write equation (1.9) as

$$S_n(f,x) = \int_{-\pi}^{\pi} f(t) D_n(x-t) dt = \int_{-\pi}^{\pi} f(x-t) D_n(t) dt$$
(1.13)

Multiplying (1.12) by f(x) and subtracting from (1.13) we get the important result

$$S_n(f,x) - f(x) = \int_{-\pi}^{\pi} (f(x-t) - f(x)) D_n(t) dt.$$
(1.14)

In order to prove that *Pointwise Convergence* of the Fourier series to f(x) namely, to prove $S_n(f, x) \longrightarrow f(x)$, we must show that the integral on the right hand side of (1.14) goes to zero as $n \longrightarrow \infty$.

Behaviour of $D_n(t)$ **and inadequacy of mere continuity!** Let us now try a naive idea that will **NOT** work and we shall try to understand the cause of the failure. It is tempting to take the absolute value of (1.14) and write

$$|S_n(f,x) - f(x)| \le \int_{-\pi}^{\pi} |f(x-t) - f(x)| |D_n(t)| dt.$$
(1.14a)

The natural thing would be to appeal to the uniform continuity and in a neighborhood $t \in [\delta, \delta]$ we estimate

$$|f(x-t) - f(x)| < \epsilon$$

whereas on $|t| > \delta$ all we have is a bound $|f(x-t) - f(x)| \le M$. To secure that the right hand side of (1.14a) goes to zero we would need that...

$$\int_{-\pi}^{\pi} |D_n(t)| dt$$

decays as $n \to \infty$ but here our luck has forsaken us ! In fact the truth is:

$$\int_{-\pi}^{\pi} |D_n(t)| dt \sim c \log n, \quad \text{as} \quad n \to \infty$$

for some positive constant c. And we see that there is no way to salvage the argument. Indeed as we know, pointwise convergence **fails** for functions that are merely continuous.