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Remark: We shall need some additional hypothesis on f(x) in order to establish any of these con-
vergence results. By way of an analogy, recall from elementary calculus the problem of expressing a
function f(x) as a Taylor series:

f(x) = a0 + a1x+ a2x
2 + . . . (1.2)

Let C∞(R) be the class of infinitely differentiable functions on the real line. We know that even if
f(x) ∈ C∞(R), the function f(x) need not admit a representation of the form (1.2). However for a
certain distinguished subclass of C∞ we do have a representation of the form (1.2) which is valid at
least on some open interval (−R,R). Further, in this case we easily obtain the formula

an =
1

n!
f (n)(0), n = 0, 1, 2, . . . (1.3)

Question: What is the analogue of the pair (1.2)-(1.3) in the context of trigonometric series?
In order to obtain a formula for the coefficients in the series (1.1), let us assume that the series

appearing in (1.1) is uniformly convergent so that the 2π periodic function f(x) is continuous. Term
by term integration of (1.1) gives immediately

a0 =
1

2π

∫ π

−π

f(x)dx. (1.4)

Multiplying (1.1) by cos kx (respectively sin kx) and integrating over [−π, π] gives immediately

ak =
1

π

∫ π

−π

f(x) cos kxdx, bk =
1

π

∫ π

−π

f(x) sin kxdx (1.5)

Definition: Suppose f(x) is integrable on [−π, π], we say the trigonometric series (1.1) is a Fourier
series if the coefficients a0, an, bn (n = 1, 2, 3, . . . ) in (1.1) are given by (1.4)-(1.5).

Not all trigonometric series are Fourier series Note that if the series (1.1) is not sufficiently
well-behaved as regards convergence, the validity of the deduction (1.4)-(1.5) is quite suspect !

In fact even if the series (1.1) converges point-wise everywhere to a sum function f(x), the coeffi-
cients may not be given by (1.4)-(1.5). One such example is the classic one (Fatou (1906)):

f(x) =
∞∑
n=2

sinnx

log n
. (1.6)

The series (1.6) converges pointwise everywhere and even uniformly on [δ, 2π− δ] for every δ > 0. The
sum f(x) is NOT Lebesgue integrable on [−π, π]. Indeed in 1875 Paul Du Bois Reymond established
that if the sum of a trigonometric series is integrable in the Riemann sense then it is a Fourier series
(that is its coefficients must be given by (1.4)-(1.5)). The result was extended in 1912 to Lebesgue
integrable functions.

See the book of G. Bachman, L. Narici and E. Beckenstein, Fourier and wavelet analysis, Springer
Verlag, 2000. (pp. 219-220).

The pointwise convergence theorem

From now on we shall only work with Fourier series of f(x) which is Lebesgue integrable on [−π, π]
namely when the coefficients a0, an, bn are given by (1.4)-(1.5).
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Lemma 1.1:

1 + 2 cos θ + 2 cos 2θ + · · ·+ 2 cosnθ =
sin(nθ + θ

2
)

sin( θ
2

) (1.7)

Let us now prove the lemma by recalling a simple identity from trigonometry:

2 cos jθ sin(θ/2) = sin(j +
1

2
)θ − sin(j − 1

2
)θ.

Set j = 1, 2, . . . , n and add. We get

2
n∑

j=1

cos jθ sin(θ/2) = sin(n+
1

2
)θ − sin(

θ

2
).

A little re-arrangement gives (1.7).

The Dirichlet Kernel As a preparation for the point-wise convergence theorem we shall obtain an
integral expression for the finite sum

Sn(f, x) = a0 +
n∑

j=1

(aj cos jx+ bj sin jx) (1.8)

Using the integrals (1.4)-(1.5) for the coefficients, the right hand side of (1.8) assumes the form:

Sn(f, x) =
1

2π

∫ π

−π

f(t)
(
1 + 2 cos(x− t) + 2 cos 2(x− t) + · · ·+ 2 cosn(x− t)

)
dt.

We use the lemma that we just proved to get

Sn(f, x) =

∫ π

−π

f(t)Dn(x− t)dt. (1.9)

where we have denoted by Dn(θ) the following expression knows as the Dirichlet kernel

Dn(θ) =
1

2π

sin(n+ 1
2
)θ

sin( θ
2
)

(1.10)

We make two simple observations:

(1) Suppose P and Q are any two periodic function on the real line with period 2c, then∫ c

−c

P (t)Q(x− t)dt =

∫ c

−c

P (x− t)Q(t)dt (1.11)

Hint: Put x − t = s in the left hand side and break the resulting integral into three integrals
namely, over the intervals [−c, x − c], [−c, c] and [c, x + c]. Now make the change of variables
s 7→ s− 2c in the last of these three integrals.

(2) Integrate both sides of equation (1.7) in Lemma 2 and show that∫ π

−π

Dn(t)dt = 1. (1.12)
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Using the simple observation (1.10) we re-write equation (1.9) as

Sn(f, x) =

∫ π

−π

f(t)Dn(x− t)dt =

∫ π

−π

f(x− t)Dn(t)dt (1.13)

Multiplying (1.12) by f(x) and subtracting from (1.13) we get the important result

Sn(f, x)− f(x) =

∫ π

−π

(f(x− t)− f(x))Dn(t)dt. (1.14)

In order to prove that Pointwise Convergence of the Fourier series to f(x) namely, to prove Sn(f, x) −→
f(x), we must show that the integral on the right hand side of (1.14) goes to zero as n −→ ∞.

Behaviour of Dn(t) and inadequacy of mere continuity! Let us now try a naive idea that will
NOT work and we shall try to understand the cause of the failure. It is tempting to take the absolute
value of (1.14) and write

|Sn(f, x)− f(x)| ≤
∫ π

−π

|f(x− t)− f(x)||Dn(t)|dt. (1.14a)

The natural thing would be to appeal to the uniform continutiy and in a neighborhood t ∈ [δ, δ] we
estimate

|f(x− t)− f(x)| < ϵ

whereas on |t| > δ all we have is a bound |f(x − t) − f(x)| ≤ M . To secure that the right hand side
of (1.14a) goes to zero we would need that. . .∫ π

−π

|Dn(t)|dt

decays as n → ∞ but here our luck has forsaken us ! In fact the truth is:∫ π

−π

|Dn(t)|dt ∼ c log n, as n → ∞

for some positive constant c. And we see that there is no way to salvage the argument. Indeed as we
know, pointwise convergence fails for functions that are merely continuous.
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