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Theorem (The Inversion theorem): Suppose f(t) is a function in S then the function can be
recovered from its Fourier transform via the formula
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To prove this first try to substitute in the RHS of (6) the expression for f(£) and invert the order of
integrals. You will run into the following (hitherto meaningless) integral:
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Proof of inversion theorem: The exp(—ez?) trick ! Equipped with this, we now write
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Now we put in the definition of f(§) and we get
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We can now safely invert the order of integral and write
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The inner integral is the Fourier transform of the Gaussian that we have computed !!
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Putting x =t + v/4es we obtain
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The proof is complete. Now, a bunch of exercises are collected all of which are amenable to the
exp(—et?) trick.

Exercises:

20. Prove that .
| Feds=2mso). ses.

If we try to calculate the integral directly then we get
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If we now try to switch the order of integrals we get
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Note that the inner integral is meaningless as it stands. The switching of the orders of integrals
is not valid. To circumvent this difficulty we shall employ the exp(—e£?) trick. So let us restart
with the observation

/_ fede = tim [ e e

e—=0+ [
00 ) 00
= i —e€ d 7ix£d
i [ le [ s

Switching the order of integrals we get
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The innermost integral on the RHS is the Fourier transform of the Gaussian that we have
computed. Incorporating this we get
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Put z = 2y+/e we get:
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The limit passes under the integral sign due to the dominated convergence theorem leading to:
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Compute the Fourier transform of (sin at)/t.
Compute the Fourier transform of f(t) = (> + a?)~! by obtaining a second order ODE.

Use the exp(—et?) trick to obtain a second order ODE for the function
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Can you recognize this as a familiar function? Also prove this by taking Laplace transform.
This is from H. Weber, Die Partiellen Differential-Gleichungen der mathematischen Physik, Vol
- I, Braunschweig, 1900 based on Riemann’s lectures. The formula appears on p. 175. This
representation is due to Mehler (1872) and Sonine (1880). See p. 170 of G. N. Watson’s treatise.
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Norm estimates for the Fourier transform We have seen that if f € L'(R) then its Fourier
transform exists and we have
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so that the Fourier transform lands up in L>°(R). Further we see that
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so that the Fourier transform is a continuous linear map from L'(R) into L>(R). Can we say anything
more about the Fourier transform?

The Riemann Lebesgue lemma We now prove a version of the Riemann Lebesgue lemma for
Fourier transforms. Before taking it up let us recall the Riemann Lebesgue lemma for Fourier series
and give a second proof of the result which dates back to Riemann himself.

Theorem (Riemann Lebesgue lemma revisited): If f € L'[—7, 7] then the Fourier coefficients
of f decay to zero.

First let us prove it under the assumption that f is continuous. Extend f to the entire real line by
declaring

f@)=f(m), w=m and f(z) = f(-7), z<-m

The extension is now bounded uniformly continuous on the entire real line. Let us now take up the
integral

I= /7r f(z) sin nxdx.



