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IV - Fourier transforms. The Schwartz space

Recall that in basic ODE theory, where one studies equations with constant coefficients, say

y′′ + ay′ + by = 0

one seeks special solutions in the form emx where m is a root of the characteristic polynomial. More
generally one seeks solutions of the form

P (x) exp(mx).

Here m is a root of the characteristic equation and P (x) is a polynomial which would be non-constant
when the characteristic equation has multiple roots. Generalizing to the case of partial differential
equations with constant coefficients (such as the fundamental equations arising in physics), it is natural
to seek plane wave solutions

exp i(x1ξ1 + x2ξ2 + · · ·+ xnξn) (4.1)

and more general solutions can be obtained by superpositions. In the case of partial differential
equations, the characteristic equation would be a polynomial in several variables. For example taking
the case of the wave equation

utt − uxx = 0, (4.2)

let us substitute the Ansatz (4.1) in the form exp i(at− bx) into (4.2) and we get

a2 − b2 = 0. (4.3)

Equation (4.3) has infinitely many solutions and indeed two continuous families (λ, λ) and (λ,−λ).
We would now have to take a continuous superposition of the plane waves

exp iλ(x+ t), exp iλ(x− t)

which means we must consider the sum of two integrals∫ ∞

−∞
f(λ) exp iλ(x+ t)dλ+

∫ ∞

−∞
g(λ) exp iλ(x− t)dλ. (4.4)

We are naturally led to the following

Definition (Fourier transform): Suppose f : R −→ C is a function for which∫ ∞

−∞
|f(t)|dt (4.5)

is finite then the integral

f̂(ξ) =

∫ ∞

−∞
f(t)e−itξdt

is called the Fourier transform of f(t). There are several conventions and we follow the one that is
common in PDEs for example see p. 213 of G. B. Folland, Fourier analysis and its applications.
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Exercises:

1. Let f(t) = 1 when |t| ≤ 1 and f(t) = 0 otherwise. Compute the Fourier transform of f . The
exercise is easy: One direcly computes:

f̂(ξ) =

∫
R
f(t)e−itξdt = 2

∫ 1

0

cos ξtdt = . . . .

2. Compute the Fourier transform of the function f(t) given by f(t) = 1/
√
1− t2 if |t| < 1 and

f(t) = 0 if |t| ≥ 1. Hint: The Bessel function makes its appearence. You need to recall the
integral definition of Jk(x) when k = 0, 1, 2, . . . .

3. Prove the Riemann Lebesgue lemma which states that if f(t) is continuous and the integral (4.5)

is finite then |f̂(ξ)| −→ 0 when ξ → ±∞. Hint: Let ϵ > 0 be arbitrary. Select a K > 0 such
that ∫

R−[−K,K]

|f(x)|dx < ϵ/3.

4. Compute the Fourier transform of fa(t) = 1/(a2 + t2) where a is a non-zero real number. Note
that the cases a > 0 and a < 0 have to be dealt with separately. Hint: Let I(ξ) be the integral.
Find the Laplace transform of I(ξ).

5. Compute the Fourier transform of exp(−a|t|) where a > 0.

6. Looking at the last two examples are you led to conjecture any general result?

7. Calculate the Fourier transform of f(t) = sin2 t/t2 using the ideas of exercise (4) above.

8. One can also compute the Fourier transform of f(t) = sin t/t but a careful justification would
have to wait. Why so? However proceed formally and try to arrive at the answer.

9. Try to calculate fa ∗ fb where fa(t) = a/(π(t2 + a2)). Recall the definition of convolution. It is
an integral from −∞ to ∞. Don’t be too surprised if the computation gets pretty ugly. This
example comes up in Probability theory under the name of Cauchy distribution.

Fourier transform of the Gaussian This is one of the most important examples in the theory of
Fourier transforms and plays a crucial role in probability theory, number theory, quantum mechanics,
theory of heat conduction and diffusive processes in general.

Theorem: Suppose a > 0. The Fourier transform of exp(−at2) is the function√
π

a
exp(−ξ2/4a).

We have already seen a proof of this in module 1, where we obtained a first order ODE for I(ξ) given
by

I(ξ) =

∫ ∞

−∞
exp(−at2 − itξ)dt. (4.6)
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Here we shall give a second proof of this important result. Let us complete the square in (4.6):

I(ξ) = e−ξ2/4a

∫ ∞

−∞
exp

(
− a

(
t+

iξ

2a

)2)
dt. (4.7)

It is tempting to put t + iξ
2a

= y in (4.7) and proceed formally. We shall refrain from doing so since
that is procedurally wrong!. Can you explain why? Instead we shall appeal to Cauchy’s theorem from
complex analysis. Call

J =

∫ ∞

−∞
exp

(
− a

(
t+

iξ

2a

)2)
dt (4.8)

Integrate the analytic function f(z) = exp(−az2) along a rectangle with vertices −R,R,R + (iξ/2a)
and −R+(iξ/2a). Call L1 the base of the rectangle and L2 the top side of the rectangle. The vertical
sides V1, V2 respectively.∫

L1

f(z)dz +

∫
L2

f(z)dz +

∫
V1

f(z)dz +

∫
V2

f(z)dz = 0. (4.9)

We must now let R −→ ∞. Obviously∫
L1

f(z)dz −→
∫ ∞

−∞
exp(−at2)dt =

√
π√
a

Also taking into account the direction along L2,∫
L2

f(z)dz −→
∫ ∞

−∞
exp−a

(
t+

iξ

2a

)2

dt = −J

Check that
∫
V1
f(z)dz and

∫
V2
f(z)dz individually go to zero as R −→ ∞ and complete the proof of

the theorem.

10. Review the earlier procedure for calculating I(ξ) via ODEs.

11. Compute the Fourier transform of x2 exp(−ax2) and more generally x2k exp(−ax2).
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