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Weyl’s theorem sharpens Kronecker’s theorem. Suppose 0 < a < b < 1 then we know that the
interval (a, b) contains infinitely many points

{α}, {2α}, {3α}, . . . (3.6)

Now let kn be the number of points in the list

{α}, {2α}, . . . , {nα} (3.7)

that lie in [a, b]. Kronecker’s theorem says that kn > 0 if n is sufficiently large. The ratio kn
n

is the
fraction of numbers in the list (3.7) that lie in [a, b]. Weyl’s theorem says that

lim
n→∞

kn
n

= b− a (3.8)

Suppose b − a = 1/4 then (3.8) says that approximately one fourth of the members (3.6) lie in [a, b]
in the long term. Thus Weyl’s theorem quantifies Kronecker’s result. We shall state and prove Weyl’s
theorem following the treatment in A. Browder, Mathematical Analysis - an introduction, Springer
Verlag, 1996. Observe that if χ is the characteristic function of [a, b] then χ({jα}) = 1 if {jα} ∈ [a, b]
and zero otherwise. Hence the number kn among the list

{α}, {2α}, . . . , {nα} (3.7)

lying inside [a, b] is precisely
χ({α}) + χ({2α}) + · · ·+ χ({nα})

and so
kn
n

=
1

n
(χ({α}) + χ({2α}) + · · ·+ χ({nα})) (3.9)

This suggests that more generally for any integrable function f(x) we must construct the Cesaro sums

Ln(f) =
1

n
(f({α}) + f({2α}) + · · ·+ f({nα})) (3.10)

Theorem Let α be an irrational number. Suppose f(x) is bounded and Riemann-integrable on [0, 1]

then the Cesaro sums (3.10) converge pointwise to
∫ 1

0
f(x)dx. In particular taking f(x) to be the

characteristic function of [a, b],

lim
n→∞

1

n
(χ({α}) + χ({2α}) + · · ·+ χ({nα})) = b− a (3.11)

Before begining the proof of the theorem let us note the following:

(i) Linearity: Ln(c1f1 + c2f2) = c1Ln(f1) + c2Ln(f2)

(ii) Monotonocity: If f ≤ g then Ln(f) ≤ Ln(g).

Let us verify the theorem for the case of f(x) = exp(2πikx).
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Proof of Weyl’s equidistribution theorem: Since f({jα}) = exp(2πik{jα}) = exp(2πijkα −
2πik[jα]) = exp(2πikjα), the sum

1

n
(f({α}) + f({2α}) + · · ·+ f({nα})) (3.12)

is simply a finite geometric series with common ratio exp(2πikα). The expression (3.12) in this case
is for k ̸= 0,

exp(2πikα)

n

1− exp(2πiknα)

1− exp(2πikα)
−→ 0

as n → ∞. On the other hand ∫ 1

0

exp(2πikx) = 0, k ̸= 0.

We see that

lim
n→∞

1

n
(f({α}) + f({2α}) + · · ·+ f({nα})) =

∫ 1

0

f(x)dx (3.13)

Note that if k = 0 then both sides of (3.13) are equal to one. The the theorem has been established
for f(x) = exp(2πikx) for k = 0, 1, 2, . . . and so by linearity it hold whenever f(x) is a trigonometric
polynomial.

To go to the next stage of the proof, Now let f(x) be a continuous 2π−periodic function on the
real line and ϵ > 0 be arbitrary. We have proved as a corollary to Fejer’s theorem that there is a
trigonometric polynomial g(x) such that

sup
R

|f(x)− g(x)| < ϵ

Since we have now rescaled the variables by introducing the factor 2π in the argument working with
exp(2πikx) rather than exp(ikx), the above approximation result must be reformulated as follows.
Suppose f(x) is a continuous one periodic function on the real line then f(x) can be approximated in
sup norn by a finite linear combination of exp(2πikx) (k = 0, 1, 2, . . . ).

Now let ϵ > 0 be arrbitrary then there is a one-periodic function g(x) such that

sup
0≤x≤1

|f(x)− g(x)| < ϵ/3 (3.14)

Now using linearity of Ln,

|Ln(f)−
∫ 1

0

f(x)dx| ≤ |Ln(f − g)|+ |Ln(g)−
∫ 1

0

g(x)dx|+

+

∫ 1

0

|f(x)− g(x)|dx

Because of (3.14) the first and the last summands are each less than ϵ/3. The middle summand

|Ln(g)−
∫ 1

0

g(x)dx|

tends to zero since the theorem has been established for all finite linear combinations of exp(2πikx)
(k = 0, 1, 2, . . . ) and there is an n0 ∈ N such that

|Ln(g)−
∫ 1

0

g(x)dx| < ϵ

3
, n > n0.
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Hence

|Ln(f)−
∫ 1

0

f(x)dx| < ϵ, n > n0.

which shows that the theorem holds for all one-periodic continuous functions f(x). We must now pass
from continuous one periodic function to Riemann integrable function. We need the following:

Theorem Suppose f : [0, 1] −→ R is a bounded Riemann integrable function then given any ϵ > 0,
there are continuous functions g, h : [0, 1] −→ R such that

(i) g(x) ≤ f(x) ≤ h(x) throughout [0, 1].

(ii) g(0) = g(1) and h(0) = h(1).

(iii)

∫ 1

0

(h(x)− g(x))dx < ϵ.

Exercise: Prove the theorem. We shall obviously extend g, h as one-periodic extension and use the
density of trigonometric polynomials with period one.
Hints and suggestions for the previous exercise: First we select a partition {0 = t0 < t1 < t2 < · · · <
tn = 1} with respect to which

U(f)− L(f) <
ϵ

3

where U(f) and L(f) are the upper and lower Riemann sums of f with respect to this partition. Let
Mj,mj be the supremum and infimum of f on the sub-interval [tj−1, tj] and M,m are the supremum
and infimum of f on the entire interval [0, 1] so that

m ≤ mj ≤ Mj ≤ M.

Now we consider the step function h0 which takes the value Mj on the interval [tj−1, tj). Idea is to
modify this h0 suitably to the requisite continuous function h. To do this we cut out a little piece from
the interval [tj−1, tj) and define h(x) = h0(x) on the closed subinterval:

[tj−1 + η, tj − η] (3.15)

Define h(0) = h(1) = M . Now we have defined the function h continuously on the union of the
subintervals (3.15) as well as the two endpoints {0, 1}. We can define the function h(x) in any way we
please on the intervals (tj − η, tj + η) subject to it being continuous and greater than equal to f(x).
But at the same time less than or equal to say 2M . Think graphically about this and it will be clear
how to do this. For example at tj define it as 2M and then linearly on [tj − η, tj] and [tj, tj + η].

Similarly one defines g(x) and then∫ 1

0

(h(x)− g(x))dx ≤ U(f)− L(f) +
∑
j

∫ tj+η

tj−η

(h(x)− g(x))dx

The first piece on RHS is less than ϵ/3 and the second piece is less than

4nη(M −m)
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This in turn will be smaller than ϵ/3 if we choose η sufficiently small. Finally, let f(x) be bounded
Riemann integrable and ϵ > 0. Select g(x) and h(x) as in the last theorem.

|Ln(f)−
∫ 1

0

f(x)dx| ≤ |Ln(f)− Ln(g)|+ |Ln(g)−
∫ 1

0

f(x)dx|

≤ |Ln(f)− Ln(g)|+ |Ln(g)−
∫ 1

0

g(x)dx|+
∫ 1

0

|f(x)− g(x)|dx

≤ |Ln(f)− Ln(g)|+ |Ln(g)−
∫ 1

0

g(x)dx|+ ϵ

Now there is an n1 such that the middle term is less than ϵ for all n > n1. So,

|Ln(f)−
∫ 1

0

f(x)dx| ≤ 2ϵ+ Ln(f − g), n > n1.

We have used the monotonocity of Ln. We use it again and write

Ln(f − g) ≤ Ln(h− g) = |Ln(h− g)−
∫ 1

0

(h(x)− g(x))dx|+
∫ 1

0

(h(x)− g(x))dx

The last piece is less than ϵ and using the fact that we have established the result for one periodic
continuous functions we see that there is a n2 ∈ N such that

|Ln(h− g)−
∫ 1

0

(h(x)− g(x))dx| < ϵ, n > n2

Taking n0 = n1 + n2 we see that

|Ln(f)−
∫ 1

0

f(x)dx| < 4ϵ, n > n0.

Proof of Weyl’s theorem is thereby completed.
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