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Applications of Fejer’s theorem An immediate corollary of Fejer’s theorem is the following:

corollary The set of all trigonometric polynomials is dense in the space of 2r—periodic continuous
functions in the following sense. Given a 2w —periodic continuous function f, for every ¢ > 0 there is
a trigonometric polynomial P,(z) such that

sup |f(z) — Pu(2)| < ¢/v2m.

|z|<m

Exercise: Show that | f(z) — P,(z)|| < e. From continuous functions we can easily pass over to
functions in L*[—, 7).

Theorem (Trigonometric polynomials are dense in L?*[—7,7]): If f € L?[—m, 7] then given
any € > 0, there is a trigonometric polynomial Py(z) such that ||f(z) — Py(z)|| < e.

Proof: Proceeds in four steps. Let € > 0 be arbitrary.

Step - I : By Luzin’s theorem, there is a continuous function g(z) on [—m, 7| such that
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Step - IT : Let M be the supremum of |g(x)|. There is a § > 0 such that
2/ 1 (2)[2de + 2/ M2dz < /8,
|z|>m—4 |z|>m—§

Step - IIT : Now we choose a continuous function G(x) such that G(z) = ¢g(z) on |z| < 7 — 6 and
G(£m) = 0. Further |G(x)| also has upper bound M. This is possible by Tietze’s extension theorem.
Then
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Nf =G| < e/2.

Step - IV : Extend G as a 2r—periodic continuous function which in view of G(£7) = 0 is contin-
uous. Now by Fejer’s theorem we select a Trig. Poly P(z) such that |G — PJ| < ¢/2. So that

If =Pl <lf =Gl +]G =Pl <e



Proof of Parseval formula via Fejer’s theorem: Parseval formula states that if f € L?[—m, 7]
then

e}

1 4 1
o [ 1@ = a4 5 3 (asl + 1) -,

Jj=1

(i) It is useful to recall at this point that if Py(z) is a trigonometric polynomial of degree N then its
n — th partial sum S,(Py,x) agrees with Py(z) foralln > N.
(i) Let us also recall that if f € L?[—, 7] then by Pythagorous’s theorem,

1f = Su(f, 21" + 15a(f, 2)II* = I £II* (3.5)
We see that (3.4) will follow from (3.5) if we show that
If = Su(f,2)]|> — 0, n — oo.
Let us apply (3.5) to f — Py where Py is a trigonometric polynomial with n > N
If = Px = Su(f = Py, 2)|I* + |1Su(f — Py, )| = |If — Pxll*
Clearly S, (f — Py, x) = Su(f,z) — Sp(Pn,x) = Su(f,x) — Py so that

1f = Su(f,2)|I* + 1Su(f = Py, x)|I* = ||f = Pwll?
whereby we conclude that
1f = Sulfs2)| < |[f = Pull, n>N.

Now we have seen that given any € > 0 there is a trigonometric polynomial Py (x) such that || f(z) —
Py ()|l < € and hence for n > N we have that ||f — S,.(f, z)| <e.

Kronecker’s theorem and Weyl’s equidistribution theorem: Let us recall a classical result
due to Leopold Kronecker sometimes also known as Dirichlet’s theorem. Suppose « is an irrational
number. Consider the sequence of numbers

{a}, {20}, {3a},. .. (3.6)

where {6} denotes the fractional part of § namely {#} = 6 — [f]. The numbers in the list are all in
[0, 1] and they are all distinct. Suppose

{ka} ={la}, k<l

Then (k — l)ao = [ka] — [la] which would mean « is a ratio of two integers. Contradiction since a
was assumed to be irrational. Thus the sequence (3.6) must have limit points in [0, 1]. Kronecker’s
theorem asserts that the sequence (3.6) is dense in [0, 1]. Let us provide a simple proof of this fact.



