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Applications of Fejer’s theorem An immediate corollary of Fejer’s theorem is the following:

corollary The set of all trigonometric polynomials is dense in the space of 2π−periodic continuous
functions in the following sense. Given a 2π−periodic continuous function f , for every ϵ > 0 there is
a trigonometric polynomial Pn(x) such that

sup
|x|≤π

|f(x)− Pn(x)| < ϵ/
√
2π.

Exercise: Show that ∥f(x) − Pn(x)∥ < ϵ. From continuous functions we can easily pass over to
functions in L2[−π, π].

Theorem (Trigonometric polynomials are dense in L2[−π, π]): If f ∈ L2[−π, π] then given
any ϵ > 0, there is a trigonometric polynomial PN(x) such that ∥f(x)− PN(x)∥ < ϵ.

Proof: Proceeds in four steps. Let ϵ > 0 be arbitrary.

Step - I : By Luzin’s theorem, there is a continuous function g(x) on [−π, π] such that∫ π

−π

|f(x)− g(x)|2dx < ϵ2/8.

Step - II : Let M be the supremum of |g(x)|. There is a δ > 0 such that

2

∫
|x|≥π−δ

|f(x)|2dx+ 2

∫
|x|≥π−δ

M2dx < ϵ2/8.

Step - III : Now we choose a continuous function G(x) such that G(x) = g(x) on |x| ≤ π − δ and
G(±π) = 0. Further |G(x)| also has upper bound M . This is possible by Tietze’s extension theorem.
Then ∫ π

−π

|f(x)−G(x)|2dx =

∫
|x|≤π−δ

|f(x)− g(x)|2dx+ 2

∫
|x|≥π−δ

(|f(x)|2 + |G(x)|2)dx

≤ ϵ2

3
+ 2

∫
|x|≥π−δ

(|f(x)|2 +M2)dx < ϵ2/4

∴ ∥f −G∥ < ϵ/2.

Step - IV : Extend G as a 2π−periodic continuous function which in view of G(±π) = 0 is contin-
uous. Now by Fejer’s theorem we select a Trig. Poly P (x) such that ∥G− P∥ < ϵ/2. So that

∥f − P∥ ≤ ∥f −G∥+ ∥G− P∥ < ϵ
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Proof of Parseval formula via Fejer’s theorem: Parseval formula states that if f ∈ L2[−π, π]
then

1

2π

∫ π

−π

|f(x)|2dx = |a0|2 +
1

2

∞∑
j=1

(|aj|2 + |bj|2) (3.4)

(i) It is useful to recall at this point that if PN(x) is a trigonometric polynomial of degree N then its
n− th partial sum Sn(PN , x) agrees with PN(x) for all n ≥ N .

(ii) Let us also recall that if f ∈ L2[−π, π] then by Pythagorous’s theorem,

∥f − Sn(f, x)∥2 + ∥Sn(f, x)∥2 = ∥f∥2 (3.5)

We see that (3.4) will follow from (3.5) if we show that

∥f − Sn(f, x)∥2 −→ 0, n → ∞.

Let us apply (3.5) to f − PN where PN is a trigonometric polynomial with n ≥ N :

∥f − PN − Sn(f − PN , x)∥2 + ∥Sn(f − PN , x)∥2 = ∥f − PN∥2

Clearly Sn(f − PN , x) = Sn(f, x)− Sn(PN , x) = Sn(f, x)− PN so that

∥f − Sn(f, x)∥2 + ∥Sn(f − PN , x)∥2 = ∥f − PN∥2

whereby we conclude that
∥f − Sn(f, x)∥ ≤ ∥f − PN∥, n > N.

Now we have seen that given any ϵ > 0 there is a trigonometric polynomial PN(x) such that ∥f(x)−
PN(x)∥ < ϵ and hence for n > N we have that ∥f − Sn(f, x)∥ < ϵ.

Kronecker’s theorem and Weyl’s equidistribution theorem: Let us recall a classical result
due to Leopold Kronecker sometimes also known as Dirichlet’s theorem. Suppose α is an irrational
number. Consider the sequence of numbers

{α}, {2α}, {3α}, . . . (3.6)

where {θ} denotes the fractional part of θ namely {θ} = θ − [θ]. The numbers in the list are all in
[0, 1] and they are all distinct. Suppose

{kα} = {lα}, k < l.

Then (k − l)α = [kα] − [lα] which would mean α is a ratio of two integers. Contradiction since α
was assumed to be irrational. Thus the sequence (3.6) must have limit points in [0, 1]. Kronecker’s
theorem asserts that the sequence (3.6) is dense in [0, 1]. Let us provide a simple proof of this fact.
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