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III - Fejer’s theorem and its applications

We shall now turn to the third type of convergence known as the Cesaro-summability of the partial
sums of the Fourier series. Let us recall a simple result in real analysis - Cauchy’s First limit theorem:

Theorem (Cauchy’s first limit theorem): Suppose (bn) is a sequence of real or complex numbers
converging to l. Then the sequence of arithmetic means

1

n
(b1 + b2 + · · ·+ bn)

also converges to l.

Proof: First let us do some preliminary algebra:∣∣∣ 1
n
(b1 + b2 + · · ·+ bn)− l

∣∣∣ = 1

n

∣∣∣(b1 − l) + (b2 − l) + · · ·+ (bn − l)
∣∣∣

Let us now split the RHS into two pieces:∣∣∣ 1
n
(b1 + b2 + · · ·+ bn)− l

∣∣∣ ≤ 1

n

(
|b1 − l|+ · · ·+ |bn1 − l|

)
+

1

n

(
|bn1+1 − l|+ · · ·+ |bn − l|

)
This is true for any n1 and n > n1 but we shall specify the n1 presently. However before that observe
that since a convergent sequence is bounded, there is an M > 0 such that |bn− l| ≤ M for all n. Hence∣∣∣ 1

n
(b1 + b2 + · · ·+ bn)− l

∣∣∣ ≤ n1M

n
+

1

n

(
|bn1+1 − l|+ · · ·+ |bn − l|

)
We now bring in the epsilons. Let ϵ > 0 be arbitray. There is an n1 such that |bn − l| < ϵ/2 for all
n ≥ n1 with this n1 the last equality implies:∣∣∣ 1

n
(b1 + b2 + · · ·+ bn)− l

∣∣∣ ≤ n1M

n
+
(n− n1

n

) ϵ
2
<

n1M

n
+

ϵ

2
, n > n1.

Now if we select n0 such that n0 > n1 and also n0 > 2n1M/ϵ then we get∣∣∣ 1
n
(b1 + b2 + · · ·+ bn)− l

∣∣∣ < n1M

n
+

ϵ

2
<

ϵ

2
+

ϵ

2
, n > n0.

completing the proof.

Remark: The converse is obviously false. So the original sequence may fail to converge but the
sequence of arithmetic means may converge. Thus the convergence of the sequence of arithmetic
means may be regarded as some kind of a generalization of the notion of ordinary convergence. The
theorem proved above is significant since it says that if the sequence converges in the ordinary sense it
converges in the generalized sense and to the same limit. Let us now give a name to this generalized
notion of convergence.

2



Definition (Cesaro convergence): A sequence (bn) is said to converge in the Cesaro sense to l if

lim
n→∞

1

n

(
b1 + b2 + · · ·+ bn

)
= l.

In particular Cesaro convergence implies convergence as we have shown above. We have seen that if
f(x) is a 2π−periodic continuous function then the sequence Sn(f, x) of partial sums of the Fourier
series of f need not converge pointwise. The Theorem of Fejer asserts that it does converge in the
sense of Cesaro. Moreover the arithmetic means converge uniformly! We recall

Definition (uniform convergence): A sequence of functions Fn(x) all defined on a common do-
main E is said to converge uniformly to F (x) if

sup
x∈E

|Fn(x)− F (x)| −→ 0, as n → ∞

We have already used this notion earlier to prove the Riemann Lebsegue lemma.

Exercises on Cesaro convergence

(1) Suppose that (bn) is a monotone increasing/decreasing sequence of real numbers then the se-
quence of arithmetic means

1

n

(
b1 + b2 + · · ·+ bn

)
is also increasing/decreasing.

(2) Suppose (bn) is a sequence of positive real numbers converging to l, then the sequence of geometric
means

gn =
(
b1 · b2 . . . bn

)1/n

also converges to l. Further, if l > 0 then the sequence of harmonic means

hn = n
(
b−1
1 + b−1

2 + · · ·+ b−1
n

)−1

also converges to l.

(3) Deduce that if (bn) is a sequence of positive real numbers such that bn+1/bn converges to l then

b
1/n
n also converges to l. This important result is known as Cauchy’s second limit theorem.

(4) Deduce that n−1(n!)1/n converges to 1/e.

The last exercise can be regarded as a WEAK form of the celebrated Stirling’s approximation formula.
We now state the precise version:

Theorem (Stirling’s approximation formula):

n! ∼ nne−n
√
2πn, for n >> 1.
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Theorem (Fejer’s theorem): Suppose f(x) is a 2π−periodic continuous function on the real line
and Sn(f, x) is the n−th partial sum of the Fourier series of f(x) then

lim
n→∞

1

n+ 1
(S0(f, x) + S1(f, x) + S2(f, x) + · · ·+ Sn(f, x)) = f(x) (3.1)

uniformly.

Proof: We begin with the formula

Sj(f, x) =

∫ π

−π

Dj(x− t)f(t)dt (3.2)

where Dj(θ) is the Dirichlet kernel: Dj(θ) =
1
2π

sin(jθ + θ
2
)/ sin(θ/2) We put j = 0, 1, 2, . . . , n and we

find that

S0(f, x) + · · ·+ Sn(f, x) =

∫ π

−π

f(t)K̃n(x− t)dt, where

K̃n(θ) =
1

2π sin(θ/2)

(
sin

θ

2
+ sin

3θ

2
+ · · ·+ sin

(2n+ 1)θ

2

)
Multiply the numerator and denominator by 2 sin θ

2
we get

K̃n(θ) =
1

4π sin2(θ/2)

(
2 sin2 θ

2
+ 2 sin

θ

2
sin

3θ

2
+ · · ·+ 2 sin

θ

2
sin

(2n+ 1)θ

2

)
=

1

4π sin2(θ/2)

(
1− cos θ + cos θ − cos 2θ + · · ·+ cosnθ − cos(n+ 1)θ

)
=

1− cos(n+ 1)θ

4π sin2(θ/2)

The Fejer’s kernel Let us not forget that we have to divide by n+1 since we are taking the average
of S0, S1, . . . , Sn: The function Kn(θ) given by

Kn(θ) =
1− cos(n+ 1)θ

4(n+ 1)π sin2(θ/2)
=

sin2((n+ 1)θ/2)

2(n+ 1)π sin2(θ/2)
(3.3)

is called the Fejer kernel. It has the pleasant feature that it is positive and this will be significant in
the proof of Fejer’s theorem. It is clear that∫ π

−π

Kn(θ)dθ = 1 (3.4)

since we have ∫ π

−π

Dj(θ)dθ = 1, for each j = 0, 1, 2, . . . , n.
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Now we have proved

1

n+ 1
(S0(f, x) + S1(f, x) + · · ·+ Sn(f, x)) =

∫ π

−π

Kn(x− t)f(t)dt

=

∫ π

−π

Kn(t)f(x− t)dt

And, f(x) =

∫ π

−π

Kn(t)f(x)dt

Subtracting,
(S0(f, x) + · · ·+ Sn(f, x))

n+ 1
− f(x) =

∫ π

−π

Kn(t)(f(x− t)− f(x))dt

∴ ∆n(x) =
∣∣∣(S0(f, x) + · · ·+ Sn(f, x))

n+ 1
− f(x)

∣∣∣ ≤
∫ π

−π

Kn(t)|f(x− t)− f(x)|dt

To show ∆n(x) → 0, We must now bring in the epsilons and deltas in the argument ! Let ϵ > 0 be
arbitrary. By uniform continuity of f(x) there is a δ > 0 such that

|f(x− t)− f(x)| < ϵ

2
, |t| < δ.

Splitting the integral in the last slide we get

∆n(x) =

∫
|t|<δ

Kn(t)|f(x− t)− f(x)|dt+
∫
δ≤|t|≤π

Kn(t)|f(x− t)− f(x)|dt

≤ ϵ

2

∫
|t|≤δ

Kn(t)dt+

∫
δ≤|t|≤π

Kn(t)|f(x− t)− f(x)|dt

≤ ϵ

2
+ 2M

∫
δ≤|t|≤π

Kn(t)dt

where M is the maximum of |f | on [−π, π]. We now deal with the second integral. If δ ≤ |t| ≤ π then
δ/2 < |t/2| ≤ π/2 and sin2 δ/2 < sin2(t/2).

0 ≤ Kn(t) =
sin2((n+ 1)t/2)

2(n+ 1)π sin2(t/2)
≤ 1

(n+ 1) sin2(δ/2)

So we get

0 ≤ ∆n(x) ≤ ϵ

2
+ 2M

∫
δ≤|t|≤π

Kn(t)dt

≤ ϵ

2
+

4Mπ

(n+ 1) sin2(δ/2)

Now we select n0 > 8Mπ/(ϵ sin2(δ/2)) then for all n > n0, we have 0 ≤ ∆n(x) < ϵ.

Applications of Fejer’s theorem An immediate corollary of Fejer’s theorem is the following:
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corollary The set of all trigonometric polynomials is dense in the space of 2π−periodic continuous
functions in the following sense. Given a 2π−periodic continuous function f , for every ϵ > 0 there is
a trigonometric polynomial Pn(x) such that

sup
|x|≤π

|f(x)− Pn(x)| < ϵ/
√
2π.

Exercise: Show that ∥f(x) − Pn(x)∥ < ϵ. From continuous functions we can easily pass over to
functions in L2[−π, π].
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