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We still have to show that the solution obtained in the last slide does attain the value f(θ) on the
boundary. Here are some exercises

Exercises:

1. Show that the Poisson kernel is non-negative and

1

2π

∫ π

−π

Πr(θ − t)dt = 1. (2.19)

2. Show that
lim
r→1−

|u(reiθ)− f(θ)| = 0. (2.20)

Hint: Write f(θ) as the integral w.r.t over [−π, π] of f(θ)Πr(θ− t)/(2π). Now let ϵ > 0 and I be
an interval of length ϵ centered at θ. The integral over I is small for one reason and the integral
over [−π, π]− I is small for a different reason. We shall return to these shortly.

Poisson formula for a ball There is a corresponding result for the ball in R3 but to derive that
we need to spend a little time with associated Legendre equations.

Theorem: Suppose given a continuous function f(x) on the unit ball B centered at the origin in R3

then the solution of the boundary value problem

∆u = 0 on B, u
∣∣∣
∂B

= f

is given by

u(y) =

∫
∂B

(1− ∥x∥2)f(x)dS(x)
(1 + ∥x∥2 − 2∥x∥ cosα)3/2

, (2.21)

where α is the angle between x and y.
For the proof see page 180 of G. B. Folland, Fourier Analysis and its applications, Amer. Math.

Soc, Indian Reprint by Universities Press, New Delhi, 2012.

Solving the heat equation We discuss this as series of solved exercises:

(i) Let u(x, t) be a smooth solution of the heat equation in the upper half-plane t ≥ 0 such that

u(x, t) = u(x + 2π, t) for all x ∈ R, t ≥ 0. Show that the energy

∫ π

−π

(u(x, t))2dx is a monotone

decreasing function of time. Prove the same result if the integral is over any interval of length 2π.
Deduce that a smooth 2π−periodic solution of the heat equation with a given initial condition,
if it exists, is unique.

Solution: Call the integral E(t) which really represents the Energy and the method itself is
called the Energy Method .

E ′(t) = 2

∫ π

−π

u(x, t)ut(x, t)dx = 2

∫ π

−π

u(x, t)uxx(x, t)dx

Integrate the last equation by parts and we get E ′(t) = −2

∫ π

−π

(ux(x, t))
2dx ≤ 0.
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So we get
0 ≤ E(t) ≤ E(0).

Now if the intial value u(x, 0) = 0 then E(0) = 0 and so E(t) = 0 for all t ≥ 0 and we infer that the
solution is identically zero. From this the uniqueness follows.

We now turn to existence.

(ii) Suppose that f(x) is a 2π− continuous periodic function. Further conditions will be imposed as
we go along. The solution of ut = uxx is sought in the form

u(x, t) = a0(t) +
∞∑
n=1

(an(t) cosnx+ bn(t) sinnx) (2.22)

Let us substitute (2.22) into the heat equation ut = uxx and we see that

a′0(t) = 0, a′n(t) = −n2an(t), b′n(t) = −n2bn(t) (2.23)

a0(t) = α0, an(t) = αne
−n2t, bn(t) = βne

−n2t.

Let us put t = 0 in equation (2.22) and we see that

f(x) = α0 +
∞∑
n=1

(αn cosnx+ βn sinnx) (2.24)

which is the Fourier expansion of the function f(x) and can be determined easily since f(x) is already
prescribed. So finally the solution u(x, t) assumes the form:

u(x, t) = α0 +
∞∑
n=1

exp(−n2t)(αn cosnx+ βn sinnx) (2.25)

We need to check that as t → 0+ the series displayed in (2.25) does converges to (2.24). The problem
amounts to a passage across the summation sign of a limiting operation namely

lim
t→0+

∞∑
n=1

(. . . ) =
∞∑
n=1

lim
t→0+

(. . . )

We shall not carry out this program in detail but observe that at least when f(x) is continuous and
piecewise smooth, the Fourier series converges uniformly and so passage to limit across the summation
sign is valid. See page 203 of the book of Bachman-Narici already cited earlier.

So we have established the existence of the solution for continuous piecewise smooth intial conditon.

Exercise: Determine the solution of the heat equation with intial condition f(x) = π2−x2 on |x| ≤ π
extended as a 2π−periodic function on the entire real line.

Abel summability: Let (an) be a sequence of complex numbers. Recall Abel’s limit theorem from
elementary analysis:
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Theorem: If
∑∞

n=0 an converges then the function f(t) given by

f(t) =
∞∑
n=0

ant
n

which is holomorphic on |t| < 1 (why?) satisfies

lim
t→1−

f(t) =
∞∑
n=0

an (2.26)

where, the limit is taken as t varies over the real axis.
The theorem is non trivial because in the equation (2.26)

LHS = lim
t→1−

( ∞∑
n=0

ant
n
)
= lim

t→1−
lim

N→∞

( N∑
n=0

ant
n
)

whereas

RHS = lim
N→∞

N∑
n=0

an = lim
N→∞

lim
t→1−

( N∑
n=0

ant
n
)

So the result is about the validity of an exchange of limits ! We say that the series

∞∑
n=0

an (2.27)

is Abel summable if the associated power series

∞∑
n=0

ant
n (2.28)

has radius of convergence 1 and further, if f(t) is the sum function the following limit

lim
t→1−

f(t)

exists. This limit is then defined to be the Abel sum of the series
∑

an. It is important that the limit
is taken as t varies along the real axis. This condition can be relaxed somewhat (Stolz region)

Abel summability and Fourier series Let us now consider a continuous 2π−periodic function
on the real line with Fourier series

a0 +
∞∑
n=1

(an cosnt+ bn sinnt) (2.29)

We know that the Fourier series (2.29) may not converge pointwise but a nice analogue of Abel-
summability holds. Let us consider the associated series

a0 +
∞∑
n=1

rn(an cosnt+ bn sinnt) (2.30)
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The series (2.30) converges for 0 ≤ r < 1 and denoting by u(reit) its sum, it is of interest to know
whether for a fixed θ ∈ R,

lim
(r,t)−→(1,θ)

u(reit) = f(θ). (2.31)

Recall the Poisson kernel:

Πr(s) =
(1− r2)

1 + r2 − 2r cos(s)

We already have the formula for u(reit) namely,

u(reit) =
1

2π

∫ π

−π

Πr(s− t)f(s)ds =
1

2π

∫ π

−π

f(t− s)Πr(s)ds (2.18)

Also,

f(θ) =
1

2π

∫ π

−π

f(θ)Πr(s)ds.

Subtracting from (2.18), we get

u(reit)− f(θ) =
1

2π

∫ π

−π

(f(t− s)− f(θ))Πr(s)ds

We exploit the fact that the Poisson kernel is a positive kernel:

|u(reit)− f(θ)| ≤ 1

2π

∫ π

−π

|f(t− s)− f(θ)|Πr(s)ds (2.32)

Let ϵ > 0 be arbitrary. Uniform continuity of f gives a δ so that

|f(x)− f(y)| < ϵ

2
, for |x− y| < 2δ.

Break the integral (2.32) in two pieces:

(a) Integral over [−δ, δ]. On this interval we have for |t− θ| < δ,

1

2π

∫ δ

−δ

|f(t− s)− f(θ)|Πr(s)ds <
ϵ

2

∫ π

−π

Πr(s)

2π
ds =

ϵ

2
. (2.32)′

We have used the fact that the integral of Πr(s) over [π, π] is 2π.

(b) For the integral over |s| > δ we argue as follows. Let M be an upper-bound for |f(s)|.

1

2π

∫
|s|>δ

|f(θ − s)− f(θ)|Πr(s)ds <
M

π

∫
|s|>δ

Πr(s)dt (2.32)′′

Now we observe that on |s| > δ,

0 ≤ Πr(s) ≤
1− r2

1 + r2 − 2r cos δ
−→ 0, as r → 1.

So for a suitable η > 0 and 1− η < r < 1, we have

Πr(s) <
ϵ

4M
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and the integral (2.32)′′ over |s| ≥ δ is again less than ϵ/2. Consolidating (2.32)′ and (2.32)′′, we get
for |t− θ| < δ and 1− η < r < 1, the estimate

|u(reit)− f(θ)| < ϵ.

and (2.31) follows namely,
lim

(r,t)−→(1,θ)
u(reit) = f(θ). (2.31)

Summarizing,

Theorem: Suppose f(t) is a continuous 2π−periodic function on the real line with Fourier series
(2.29) then, for fixed θ ∈ R, the function u(reit) which is the sum of (2.30) converges to f(eiθ) as
(r, t) −→ (1−, θ).
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