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Tying up some loose ends In case you haven’t already figured it out !

(a) First the area formula (2.9). Let C be a smooth simple closed curve traced counter-clockwise.
Let us apply Green’s theorem:∮

Pdx+Qdy =

∫∫ (∂Q
∂x

− ∂P

∂y

)
dxdy

Taking Q = x and P = 0 we get the area formula (2.9).

(b) Recall that if γ : [a, b] −→ R2 is a regular smooth curve, its arc-length s(t) is given by

ds

dt
= |γ̇(t)|

and hence (dx
dt

)2

+
(dy
dt

)2

=
(ds
dt

)2

Now use the relation between s and t in the above proof of isoperimetric theorem.

(c) Now, if f(t) and g(t) are both in L2[−π, π] taking real values, with Fourier coefficients α0, αn, βn

and γ0, γn, δn (n = 1, 2, 3, . . . ) then

1

2π

∫ π

−π

|f(t)± g(t)|2dt = (α0 ± γ0)
2 +

1

2

∞∑
n=1

(
(αn ± γn)

2 + (βn ± δn)
2
)

Subtracting the two expressions now gives

1

2π

∫ π

−π

f(t)g(t)dt = α0γ0 +
1

2

∞∑
n=1

(
αnγn + βnδn

)
Now take f(t) = x(t) and g(t) = y′(t) and noting that for a smooth function, the Fourier series
can be differentiated term by term to yield the Fourier series for the derived function.

Maximum Modulus Theorem in complex analysis As a second application of Parseval formula,
we prove the important maximum modulus theorem in complex analysis.

Theorem (MAx. Mod. Theorem): Suppose f is non-constant holomorphic function on a con-
nected domain Ω in the complex plane and |f | is bounded in Ω then the supremum of |f | cannot be
attained at any point of Ω. Assume that the maximum modulus is attained at a point in Ω which we
may assume without loss of generality to be the origin. Let us consider the closed disc D of radius R
centered at the origin and contained in Ω. The power series for f converges absolutely and uniformly
in D:

f(z) = a0 + a1z + a2z
2 + . . . , |z| ≤ R.

= a0 + a1re
iθ + a2r

2e2iθ + . . . , 0 ≤ r ≤ R, 0 ≤ θ ≤ 2π.

We recognize here a Fourier series of the smooth 2π periodic function θ 7→ f(reiθ). For a fixed r with
0 < r ≤ R we compute:∫ 2π

0

|f(reiθ)|2dθ =
∞∑

m,n=0

aman

∫ 2π

0

ei(n−m)θdθ = 2π
∞∑
n=0

|an|2
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Question: How to justify the exchange of summation and integration?
What we see in this displayed equation is exactly the Parseval formula for the function θ 7→ f(reiθ).

Now by our assumption,

|f(reiθ)| ≤ |f(0)| = |a0|, 0 ≤ θ ≤ 2π, 0 < r ≤ R.

We infer,

2π
∞∑
n=0

|an|2 =
∫ 2π

0

|f(reiθ)|2dθ ≤ 2π|a0|2.

forcing a1 = a2 = a3 = · · · = 0. This implies f is constant on Ω (how?). Contradiction.

Application to PDEs: Laplace equation on a disc: We shall now apply the theory of Fourier
series for solving some classical PDEs. We take up the Dirichlet problem for the Laplace equation
on the unit disc D = {(x, y) : x2 + y2 ≤ 1}. The problem seeks a twice continuously differentiable
function u such that

∆u = 0, on D, u(cos θ, sin θ) = f(θ), (2.11)

where we assume that f is Lipschitz and 2π periodic on R. First we write the equation in polar
coordinates. Recall that

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
. (2.12)

So the PDE becomes:
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0. (2.13)

Seeking special solutions in the form u(x, y) = v(r)g(θ) where g(θ) is 2π periodic,

(r2v′′ + rv′)/v = −g′′/g

Since g is a function of θ alone and v is a function of r alone, either side must be a constant say k2

and we get the pair of ODEs

r2v′′(r) + rv′(r)− k2v(r) = 0, g′′(θ) + k2g(θ) = 0.

These have solutions
v(r) = Ark +Br−k, g(θ) = C cos kθ +D sin kθ.

Now since g(θ) is 2π-periodic, we must have k ∈ Z (how?). Also since the solution is continuous at
the origin, k ≥ 0. Thus we get the solution in the form

u(r cos θ, r sin θ) = a0 +
∞∑
n=1

rn(an cosnθ + bn sinnθ) (2.14)

To determine the coefficients of this Fourier expansion we must use the boundary condition. Setting
r = 1 we get

f(θ) = a0 +
∞∑
n=1

(an cosnθ + bn sinnθ) (2.15)

from which we deduce the values of a0, a1, . . . and b1, b2, . . . .
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Exercises:

1. Determine the solution of the Laplace’s equation in the unit disc with the prescribed boundary
value | sin θ|.

2. Show that if u is a harmonic function (that is ∆u = 0) then

1

2π

∫ π

−π

u(r cos θ, r sin θ)dθ = u(0, 0). (2.16)

This is called the mean value theorem for harmonic functions.

The Poisson kernel: Let us continue with the formula obtained in the last slide:

u(reiθ) = a0 +
∞∑
n=1

rn(an cosnθ + bn sinnθ) (2.14)

But we know the formula for these Fourier coefficients. Inserting these we get

u(reiθ) =
1

2π

∫ π

−π

f(t)dt+
1

π

∞∑
n=1

rn
(
cosnθ

∫ π

−π

f(t) cosntdt+

sinnθ

∫ π

−π

f(t) sinntdt
)

Since the integrals decay to zero by Riemann Lebesgue lemma, it is easy to justify exchange of sum
and integral (with 0 ≤ r < 1):

u(reiθ) =
1

2π

∫ π

−π

(
1 + 2

∞∑
n=1

rn(cosnθ cosnt+ sinnθ sinnt)
)
f(t)dt (2.17)

Exercise:

1 +
∞∑
n=1

2rn cosns =
1− r2

1 + r2 − 2r cos s

and we get the result

u(reiθ) =
1

2π

∫ π

−π

(1− r2)f(s)ds

1 + r2 − 2r cos(θ − s)
(2.18)

The expression Πr(θ − t) = (1− r2)/(1 + r2 − 2r cos(θ − t)) is called the Poisson Kernel.
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