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Tying up some loose ends In case you haven'’t already figured it out !

(a) First the area formula (2.9). Let C' be a smooth simple closed curve traced counter-clockwise.
Let us apply Green’s theorem:
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Taking @ = x and P = 0 we get the area formula (2.9).

(b) Recall that if 7y : [a,b] — R? is a regular smooth curve, its arc-length s(t) is given by
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Now use the relation between s and ¢ in the above proof of isoperimetric theorem.

and hence

(c) Now, if f(t) and g(¢) are both in L*[—7, 7] taking real values, with Fourier coefficients ag, o, 85
and Yo, Vn, 0p (n =1,2,3,...) then

% 7ﬂ|f(t)ig(t)|2dt=(aoﬂ:% 2+%;<ani%) + (B £ 6, ))

Subtracting the two expressions now gives

/ f)g(t)dt = aoro + 5 Z (an% + B n>

Now take f(t) = z(t) and g(t) = ¥/(t) and noting that for a smooth function, the Fourier series
can be differentiated term by term to yield the Fourier series for the derived function.

Maximum Modulus Theorem in complex analysis As a second application of Parseval formula,
we prove the important mazimum modulus theorem in complex analysis.

Theorem (MAx. Mod. Theorem): Suppose f is non-constant holomorphic function on a con-
nected domain  in the complex plane and |f| is bounded in Q then the supremum of |f| cannot be
attained at any point of Q. Assume that the maximum modulus is attained at a point in ) which we
may assume without loss of generality to be the origin. Let us consider the closed disc D of radius R

centered at the origin and contained in 2. The power series for f converges absolutely and uniformly
in D:

f(z) = CL0+CL12+6L222+ . 2| <R

= ag+ are’ +ar262’9+ .., 0<r<R 0<0<2n7.

We recognize here a Fourier series of the smooth 27 periodic function 6 — f(re®). For a fixed r with
0 < r < R we compute:
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Question: How to justify the exchange of summation and integration?
What we see in this displayed equation is exactly the Parseval formula for the function § — f(re®).
Now by our assumption,

|f(rei9)] <|f0)=lao], 0<O<2m, 0<r<R.

We infer,
o 2
21y Jay|* = / |f(re®)|?df < 2r|ao|.
n=0 0
forcing a; = ag = a3 = --- = 0. This implies f is constant on 2 (how?). Contradiction.

Application to PDEs: Laplace equation on a disc: We shall now apply the theory of Fourier
series for solving some classical PDEs. We take up the Dirichlet problem for the Laplace equation
on the unit disc D = {(z,y) : 2%+ y*> < 1}. The problem seeks a twice continuously differentiable
function u such that

Au=0, on D, wu(cosf,sinf) = f(0), (2.11)

where we assume that f is Lipschitz and 27 periodic on R. First we write the equation in polar

coordinates. Recall that
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Seeking special solutions in the form u(x,y) = v(r)g(f) where g(0) is 27 periodic,
(TZU” 4 7“1)/)/’0 — _g///g

Since ¢ is a function of @ alone and v is a function of r alone, either side must be a constant say k>
and we get the pair of ODEs

20" (r) +rv'(r) — K*o(r) =0, ¢"(0) + k*g(0) = 0.
These have solutions
v(r) = Ar* + Br7",  g(#) = Ccoskb + Dsin k6.

Now since g(f) is 2m-periodic, we must have k € Z (how?). Also since the solution is continuous at
the origin, £ > 0. Thus we get the solution in the form

u(rcosf,rsinf) = ag + Z r™(ay cosnf + b, sinnf) (2.14)

n=1

To determine the coefficients of this Fourier expansion we must use the boundary condition. Setting
r =1 we get

f(0) =ap+ Z(an cosnb + b, sinnb) (2.15)
n=1
from which we deduce the values of ag,aq,... and by, b, .. ..
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Exercises:

1. Determine the solution of the Laplace’s equation in the unit disc with the prescribed boundary
value |sin ).

2. Show that if u is a harmonic function (that is Au = 0) then

1 K

2 ) .

u(rcosf,rsin@)dd = u(0,0). (2.16)
This is called the mean value theorem for harmonic functions.

The Poisson kernel: Let us continue with the formula obtained in the last slide:
u(re®) = ag + Z r"(a, cosnf + b, sin nf) (2.14)
n=1
But we know the formula for these Fourier coefficients. Inserting these we get
u(re’®) = 1 /7r f(t)dt + 1 f:rTL(COS no /7r f(t) cosntdt +
Com ) T ,,r

sin n@/ f(t)sin ntdt)

Since the integrals decay to zero by Riemann Lebesgue lemma, it is easy to justify exchange of sum
and integral (with 0 < r < 1):

u(re?) = ZL / (1 +2 Z " (cos nf cos nt + sin nf sin nt))f(t)dt (2.17)
7r

- n=1

Exercise:
1—1r2

1472 —2rcoss

1+22r”cosns =

n=1
. 1 (™ (1—7r?)f(s)ds
0y 2.18
u(re”) 21 /,r 1+7r2—2rcos(f — s) (2.18)
The expression I1.(0 — t) = (1 — r?)/(1 4+ r? — 2r cos(6 — t)) is called the Poisson Kernel.

and we get the result




