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Hello,  welcome  to NPTEL NOC and introductory  course  on points  set topology part  II,

module 62, connected sum and classification of surfaces. 

Last time we have introduced the notion of rubber sheet models and stated a big theorem

which is supposed to give you all compact connected surfaces. The same result we will try to

explain in a more geometric way this time. So, I have defined one single notion here. Start

with any two connected surfaces. This time let us not bother about the boundary. Preferably

we shall work with boundary-less manifolds. Maybe boundaries are there, but keep it  far

away from the our cite of operations. 

 

Start with any two connected surfaces , and . Take two embeddings of the disc , the

closed disc , say,  and , one in  and other in . Put  of the boundary circle.

Take  from  to  to be , where I mean by . I am restricting  to the boundary

circle  , and taking the inverse. Then the quotient space obtained as follows, namely, you

take   throw away the interior of the image of  , similarly take   and throw away the

interior of of the image of , and their disjoint union, (so, you started with two surfaces now

you have made two holes one in each, there. Hole means what? Removing the interior of a

disc, so boundary of the disc is there, so those things are  and  here), and now identify 



with  for each , where  is . So, that quotient space is called the connected

sum of  and  and is denoted by this notation  connected-sum . That is the way I read

this one.
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So, here is a picture. The picture may be confusing, I do not know. This is one surface there

is another surface, there is a disc here there is a disc here, these are embedded discs. So, you

remove the interior of this remove the interior of that there is a circle here left out namely

image of a circle. So, this looks like an ellipse here. So, identify them like this. So, bring

them  together  like  this  identify  the  two  circles  by  a  homeomorphism  that  told

homeomorphism is not an arbitrary homeomorphism. It is from this circle see this one is ,

so , the other way round. so there is a homeomorphism from here to here you identify

these two circles.



For example, if you take a disc, remove the interior of a smaller disc from that you will get an

annulus. Do the same thing with another copy of the disc also. Now you have got two interior

circles in both the annuali, you identify them, what do you get? You will get back again a

cylinder. Actually annulus and annulus they are both cylinders. So, when you identify two of

the circles one circle from here and other circle from another one, you get one cylinder.

So the word connected sum precisely refers to this one. you start with connected surfaces

here the end result is also a connected surface. To begin with there are two of them here the

end one single is connected surface. So, two of them you start but each of them must be

connected then you make them connected by this performance. If you just join them at one

point it will fail to be a manifold, though that would have been the simplest way of doing a

connected sum. Indeed, in general topology we will do like that only and call it one point

union. But while dealing with manifolds, it will fail to yield a manifold. So you have to do

this trick, namely remove a small disc here, remove a small disc there and look a the resulting

boundary circles and identify them. 
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The following observations which are intuitively clear of course, need proofs which we shall

skip. So, what are these observations? 

 connected sum  is a connected 2-manifold. It is compact if and only if, both  and 

are compact. 

See, there was no statement about this being compact in the definition of connected sum. So I

could have taken any two connected surface that is all. So, far whatever I have stated they are

not at all difficult  to verify.  So, only because we have time limits here we cannot go on

explaining everything.
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The homeomorphism type of  connected  does not depend upon where and how you have

chosen these embeddings  from  to , and  from  to , up to homeomorphism, the

connected sum is the same. This is a deeper statement, and requires some proof.

(Refer Slide Time: 07:57)

If you take  connected sum , where  is any surface and  is the standard -sphere, what

do you get? You will get back S itself, Why? Because you have to remove a -disc from here

and disc from here. When you remove disc from  what do you get? You have another disc,

the complement. Now you are filling that disc back in the gap that we have produced here in

. That is all. So, all that amounts doing nothing so that nothing is up to a homeomorphism.

So, taking connected sum with the -sphere produces no effect. That means it is a two sided

identity for the binary operation of taking connected sum.  So, that is why I told you that  is

like the zero element. This connected sum more or less, can be thought of as an additive



operation. You can see that it is associative, and commutative. The only thing is there is no

inverse here, it is like addition on the set of natural numbers. You see there is a beautiful

algebra here out of these what are called Cobordism theory. But that I cannot go into the

detail. In Cobordism theory this connected sum operation is the sacrosanct there. So, this can

be defined in all dimensions also, but now we are learning it in dimension two.
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Let us denote the torus   by this simple symbol this  . I will just read it   and the

projective plane by  , this we have already done. Let us denote the connected sum of  

copies of  by . Similarly, let the connected sum of  copies of the projective space  be

denoted by just .

So, again this   and   are coming here. just like in the last lecture. When you perform the

connected  sum operation more than once,  there is  no need to put  brackets  here,  because



associativity.  So  the  notation   is  unambigious.  Similarly,   is   connected  sum  

connected sum ...,  copies. What is ? It is nothing but  itself;  is just  Because only

one copy is there. You have performed no operation. So, this are the short notation for this

long thing.
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Now, the big theorem here is like we did after long, the last time, but this time we are having

easy time. It is the following:

 

Every  connected  compact  surface  without  boundary,  (I  want  to  emphasize  that  here),  is

homeomorphic to exactly one of the three things. 

 

 

Actually there are three lists here, this is a single element, but this an infinite sequence this is

also infinite sequence, indexed by natural numbers.
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Exactly similar to the previous theorem that we had I will just show you that theorem which

we did last time, this is the theorem. The list (a), we have told you it represents . These are

going to be in  second list  's  and these are going to be  's.  Every compact connected

surface without boundary is homeomorphic to precisely one of the surfaces defined by these

canonical polygons. So, this is some kind of technique to obtain such a result.
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Finally, we would like to have this description. So, why these two are the same, I will try to

explain that one. Not a proof, but just some explanation. The theorem has two parts, you see

every  compact  connected  surface  is  exactly  one  of  them.  First  of  all  take  any  compact

connected surface you must be able to find them here, means what? Up to homeomorphism.

Moreover, every element here in the list is a different homeomorphism type. So that is the

second part here, there are two parts of the statement of the classification.

It asserts that up to homeomorphism there are no more compact connected surfaces other than

the ones mentioned in the list, the list is exhaustive. The second part is that which you may

call is non-overlapping property of the list. namely the uniqueness part, asserts that members

of the above list represent distinct homeomorphism types.
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The proof  of  the  exhaustion  part:  there  are  essentially  two different  approaches.  In  first

approach one proves that every compact surface can be given a smooth structure and then

uses what is called Morse theory. You can it from read many books. But you can also read it

from my book itself. 

The other approach is the one that we have been discussing in the last module, namely this

rubber sheet geometry, the canonical polygons or whatever you want to call them.

So, let me explain this a little more because we have done some work there. Let me explain

the  relation  between  the  previous  theorem and  this  present  theorem,  namely  the  second

approach. One first proves that every surface can be triangulated, what is the meaning of

triangulation?  Just  the  ability  to  cut  a  surface  into  finitely  many  pieces  each  of  them

homeomorphic to a triangle, homeomorphic to a triangle is simply a homeomorphic to a disc,

but you like to think of them as a triangular pieces with three edges, so this is the idea. The

proof of this is not at all easy. The proof of that every surface can be given a smooth structure

is even much harder. So, you have to choose.

So,  right  now  you  have  to  assume  that  your  surfaces  are  all  triangulated.  From  the

triangulation, what you can do is? You can get a regular -polygon with edge identifications

as indicated in the last module. You cut the surface into all these triangles, while cutting

down what you do, you keep a label wherever you perform the cut. you are introducing two

different edges by each cut. So, label both the edges with the same letter and exponent. Best

method is to put an arrow to indicate the direction. So, this will help you in recovering the

same surface back aafter you do some patch works. That is the whole idea.

So, look at all these triangles. Now lay them out on the table one by one side by side, as if

you are solving a zig-saw puzzle.  When you are doing jigsaw puzzle nobody tells which

piece you should take first and so on right? So you pick up any one of the pieces first and try

to arrange the next one and so on. How do you do that? There is only one rule, namely,

wherever an edge indicated by a letter you look for that letter in one of the triangles it will be

there, so take that particular piece and lay it down next the previous one so as the two edges

indicated  by  the  letter  match  up.  In  this  Zig-saw puzzle,  you  are  allowed to  stretch  the

triangles whichever way you like so that every time you have a convex polygon on the table.



Readjust whatever shape you have got into a convex polygon. That is the extra freedom here.

That is all.

So, when you finished all the pieces, you have a union of finite many triangles and that is a

convex polygon. Now what  will  happen?  There  will  be all  these boundary edges of  this

convex polygon. Remember for each of these edges is paired with another edge. Where are

these twins.  They are also there in  the same polygon but on the boundary now, because

everything in the interior they have got their pair, they have been paired already. So, these are

the last ones which are left out. So, you will have exactly an even number of sides in your

polygon, a -sided polygon. That will give you a paper scheme. You perform identifications

as indicated by the paper scheme, you will get back the surface you started with. That is how

the exhaustion part of the theorem is proved. 

So, every surface can be got by a rubber sheet scheme. Now, there is another part, now we

have to say that the list contains all the representatives, representatives means what? Up to

homeomorphism. So, that is the harder part. that we have done in algebraic topology course

part II, Also you can read it from my book in algebraic topology.
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So, this is kind of combinatorial argument. This to cutting down a surface and re-assemble

obtain canonical  polygons as listed last  time.  They are justified by one main topological

observation. What is that? If you have made two different cuts in a surface you can get back

the original surface by performing the two corresponding patch-up operations in whichever

order you want. You may first stitch back the second cut and then stitch the first one or the

other  way round.  It  is  no problem.  The  resulting  surface  that  you  get  will  be  the  same

provided you have performed all the stitching back wherever you have cut that is all. So, this

is the beauty. You can cut as many times as you want, every time you have cut, sometime or

the other,  that cutting must be stitched back, must be identified that is all. We shall not go

into details here, but we shall indicate how to get 12.50 from 12.47 now. So, that is the main

thing, there are two different descriptions, I want to relate them for now.
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First of all, note that list (a) in both cases corresponds to . Now come to the list (b). Start

with  the  rubber  sheets  scheme   and  some  ,  does  not  matter.  Note  that  the

resulting surface   has one boundary component  , because this is not identified with any

other edge. And that  will become a circle because both the endpoints are getting identified.

If you identify this entire circle to a single point, make that circle smaller and smaller and

bring  it  to  a  single  point,  that  quotient  space   is  the  same  as  the  quotient  space

corresponding to the rubber sheet scheme , as if that edge has been shortened to a

single point, before you identify other edges, so no free edge left out that is all.

We now that gives you a torus. Therefore, this scheme represents a torus with a hole, do you

understand this? I will repeat it. So, what I start, with? I do not start with a torus with a hole.

I take the scheme , I know that gives a torus. But now I have a different scheme

here, namely, there is a pentagon and it is marked with , the fifth side is just named

. When you carry out the identifications,  will become a circle in the quotient .  Whatever

this quotient is, I do not know what it is, does not matter, but there is a hole in it a boundary

component. 

Now, you move that hole to a smaller, make it smaller circle, and make it a single point. So,

that surface is the same thing as if you have got it from the scheme . Therefore,

the surface  must be what? The torus with a hole. That is the whole idea. So, reversing this

argument, we see that if you start with a torus and make a hole in it, then the resulting surface

with boundary is nothing but the surface obtained by this . So, this is the scheme

for that.
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So, this is a picture here. So, . So, that  is there, which we do not want. So, once

you perform the identifications, in the quotient space, a becomes a loop,  also becomes a

loop but identified with the same loop. Similarly  and  become another loop, they are in

the interior of the surface. The edge  also becomes another single but in the boundary of the

surface. So, make it smaller and smaller is the same thing as putting a disc here over this

circle.  Removing a disc here you get back this one. This picture is as if you have got it from

. So, this is a picture. So, making the circle to a single point is same thing as putting

a disc here. Removing the disc from the torus gives you the surface same as given by the

scheme, . Let us call this scheme .

(Refer Slide Time: 24:27)

Therefore, it follows that the connected sum , of two copies of the torus  is obtained

by taking two copies of the scheme  namely  and  say. So,  is what? ,

and   is  what?  .  I  have  changed  the  order  cyclically  and  written  it  as

, because finally I want to bring  here and  there together and merge them. 

 First identify the two free edge  and , (you can identify them whichever order you want

because the two edges are in two different schemes, that is one of the main guiding principle

here. You get a scheme what is it? You identify  and , two boundary edges of two discs

Therefore the union is again a disc with the common edge  disappearing in the interior

of the new disc. On the boundsary you have the scheme  followed by 
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This is a picture. So,  and  they are brought together here in this picture then realigned the

whole  thing,  this  dotted  thing  here  is  ,  one  identified  with  other,  rest  of  them  is

. In the old theorem this is another item in (b) with  here.
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On the other hand, if you perform the scheme identifications on each of the schemes first,

what  you  get?  Two  copies  of  ,  each  representing  the  torus  minus  a  disc,  with  the

boundaries represented by the two edges  and  respectively. Join  and  this time at the

last,  what  do  you  get?  You  get  the  connected  sum  of  the  torus  with  itself.  Therefore

represented the connected sum of the torus with itself is represented by the scheme number 2

in  the  list  (b).Now  an  ordinary  induction  tells  you  that  if  you  take   of  them  like

 that is nothing but the connected sum of  copies of the torus. It follows

that the two lists (b) in the two theorems give you the same class of surfaces. 
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Exactly similar argument is valid for the list (c) as well. Therefore, 12.50 follows from 12.47.
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Finally,  let us see two different  geometric ways of constructing all  the  's as embedded

smooth  objects  in  .  I  want  to  tell  you  two  different  methods,  because  they  are  both

interesting and useful. There may be many. In the first method, we begin with the union of 

circles  in , such that  touches ,  touches , and so on like a chain, so they are

not all disjoint. What are the disjoint?  and  are disjoint of course.  and  are disjoint,

and so on. So, whenever , they are disjoint when they are consecutive, they have a

single point in common. They are touching each other. In the picture below I have taken three

of them because picture has to be limited, you cannot take arbitrary n anyway in a picture. 

So, three of them with the same radius   that is just an extra thing so that you get a nicer

picture that is all. Now put  equal to union of these 's finite union, and let  be the set of

all points  inside  such that the distance between  and these circles union of circles is less

than , wherever where , this an open subset, take less than or equal to , you get a

closed and bounded subset  and so compact.  Its  boundary in   is  given by the equation

.  should be chosen correctly namely less than . Then this boundary is a surface.

So that is the whole idea.
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So, this is a picture here. The dotted circles here, these are the beginning circles , they are

touching at one point one after another they are inside  . The entire solid, the set of all

points which are at a distance less than or equal to some , (  must be chosen positive and less

than ). So these are circles of radius . So, this  must be less than , strictly less than . For

the sake of this picture, I have taken . Take all the points which are at a distance less

than  like that. And then look at the boundary that boundary is the connected sum of three

tori in the picture. If you have taken  of them, it is a connected from of  tori. If you take

only one circle, first thing you have to see is that it is actually the torus. So, that part is just

some elementary three dimensional calculus, you should know some differential calculus to

see that this is actually a nice smooth surface. 
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Of course, it takes some three variable calculus to show that the boundary of   is diffeo-

morphic to  , whereas it is intuitively quite clear. You take a circle, you thicken it, like a

wire. The boundary of that is a torus. So that is what we are doing more generally with this

union of circles. 

One approach is over, so you have got a model of the surface. The boundary surface, which is

,  is inside  over. So, actually, I should write  here, in my notation, I should write 

and  to be consistent.

In second approach, I merely start with an equation. So, this should be liked by algebraic

geometers for example. So, you can take equation here, of course, all with real coefficients in

three variables and hence should represent some subset of . You can look at what is this

funny equation. See the left hand side is just some polynomial in  and , the right hand side

is just . Also, the variable  is separated. 

So, look at this LHS. There is one special factor here and then there are similar factors here 

ranging from  to . What are they? The first factor here is . If

you put this equal to , that will be the equation of the circle with the radius   and the

center  equal  to  .  Similarly,  here  these factors represent  circles with  center  with

 and the radius  . I have taken the product of these polynomials and putting them

equal to minus . This time I take  to be the set of all points  inside  which satisfy

this equation (41) and claim that this represents , homeomorphic to .
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Look at this picture. So, how many circles are there?  and one big circle. What is

this big circle? This is the circle represented by the first fact on the LHS. So, where are all

these circles? Inside , the -plane. The -axis is shown this way. So, I will tell you

a little more about this. I do not want to prove anything here. Namely, take this polynomial

on the left hand side just put equal to  . What is the meaning of that? The third coordinate

equals  means intersection of  with with . What is that? If some product is  that

means at least one of the factor must be , one by one we get all these circles, all of them

have their centers on the -axis. 

The radius of the first circle is , the radius of all other circle is . And the centers are

. The largest  circle with radius   actually encloses all the other

circles, where as these smaller circles themselves do not encircle any of the other. That kind

of picture is very important. So, they are mutually external to each other. The disc bounded

by any one of them does not contain any other circle. That picture is important.

Now, what happens? Look at this area here bounded by the big circle and lying outside of the

all the small circles. So, how do you get that area, how do you express any point in this? I am

not interested in the areas as such, but points in this domain, so how do you get that one.

They are inside this one means,  the value of the first factor must be less than . Equal to 

would have given the big circle. Less than  will give the inside region of the circle. Bigger

than  will be outside. Same thing here I want it to be outside all small circles, so the value of

each of the other factors is positive at all these points. Therefore the value of the product, the

entire LHS is negative.  

Indeed, conversely, whenever the value of the entire product is negative it represents a point

inside this region.  Take the negative of that negative number, that will be a positive number.

Take the square root of that, that is your . So, that is the meaning of this equal to . Then

there are two square roots, accordingly you will get two values for  and hence two points in

, one above the -plane and another below the -plane. So, take that one, you take the

positive  , you will get the graph of that function precisely this part and then you will get

another  copy  below  this  with  .  those  2  graphs  is  precisely  this  one.  So,   equal  to

something is the graph of that function of two variables, namely square root of the minus of

the LHS. You get two graphs corresponding to two square roots. The union of these two

graphs this is surface.

If you take a point   not belonging to this region, then the value of the LHS is equal

positive and so minus of that does not have a real square root. That just means that the set a



point  statisfies (41) only of  belongs to this region, where the value of LHS is

less than or equal to zero. That is a trick here.
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So, it is easily checked that  is a smooth surface. If you intersect  with plane , what

you get? A disjoint union of   circle, all that I have written down here. Finally,   is

nothing but union of two graphs   equals plus minus square root of minus   where

 denotes the polynomial function on the LHS of (41). That is enough justification to

claim that  is a smooth surface. 

So, in two different ways I was shown that there are embedded surfaces inside  . Up to

homeomorphism, they represent members of list (b). The lone member in (a), obviously is

there already, we know that. Members in list (c) cannot be represented by embedded surfaces

in . Look at , you cannot embed it in . Look at the Mobius band, Mobius band is also

non orientable which has a boundary. But that can be embeded in . The Mobius band is the

same thing as making a hole inside  , as soon as you make a hole you have a boundary

circle. Take any surface in the list (c). Namely,  connected sum of n copies of . Make a

hole in that. That surface can be represented by an embedded object  inside  . Not very

difficult to prove, but I will not prove that here.

Alternatively, you do not want to make a hole then what best you can do? You can get an

`embedding'  except there will be one single crossing around a circle that is called a self-

intersection of the immersed surface, such things are called immersions not embeddings. So,

there will be two circles in the original surface and a map which will be an embedding except

the map takes these two circles, to the same circle, they will be identified to a single circle in

the image, so that is the meaning of that. So, that is the best thing you can do for all the non

orientable surfaces namely those which occur in the list (c). 
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So, 's cannot be represented by objects in . The saving grace is that if you allow just one

self-intersection along the circle then it is possible or equivalently suppose you grant us to

remove a disc, then you can have   embedding, namely, take the immersion as above and

wherever there is an intersection you cut that circle inside that there will be a disc and remove

that disc. So you remove that disc which was extra then you do not have to cross it out. So,

that is how you can get this embeddings of the surface after removing a disc.
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Now comes the uniqueness part, I will tell you a few things. The uniqueness part cannot be

proved by pure points set topology. It is not like classifying the one-dimensional manifolds

which could be done which we have done just using point set topology. You have to bring



some tools from algebraic topology, you have to bring some invariants, you may use some

heavy  machinery  like  complex  analysis,  not  elementary  complex  analysis  etc.  So,  like

Riemann did, in the beginning. So, you have to have some high machinery here.

So, I will tell you the simplest thing is  that you can use the fundamental group. Just use

fundamental group. You compare the fundamental groups of all these objects, they will be all

distinct groups, distinct means what? Non isomorphic. That is not difficult to prove once you

know what is fundamental group and how to compute these things for surfaces. Now if you

know that if two spaces are homeomorphic to each other, then they will have isomorphic

fundamental groups. Not only that if they are homotopy equivalent to each other, then also

they have isomorphic funcdamental groups. 

Since the list will give you different fundamental groups for different members, they must be

a non-homeomorphic.  So, that is  the way the proof is completed. Instead of fundamental

group you can use what is called homology groups. These homology groups may take a little

more  time,  but  they  are  much  easier  to  understand,  easier  to  compute  than  fundamental

groups actually. They will also give you that these lists have different homology groups, just

you have to look at  and  both of them you have to consider.  will be good enough to

distinguish between the list (b) and (c), list (a) is easy to differentiate. But within the list (b)

or (c)  you will have to use   to distinguish two members. Homology groups come in a

sequence  and so on. 

So  finally,  the  big  thing  here  is  which  is  very  special  for  surfaces  and  1-dimensional

manifolds. It turns out that the classification of connected compact surfaces without boundary

is  the  same  whether  you  consider  homotopy  types,  homeomorphism  types,  or

diffeomorphism types, this is a very deep result. We have not done the full thing here, even

for 1-dimensional case. 

The classification that we have done would have been just by homotopy type, likely you have

to careful with boundaries, do not use boundaries, connected manifolds without boundary.

Boundary you can later on include, once you have complete classification without boundary,

Similarly here, up to homotopy you can determine the whole thing. You will have to assume



that they are without boundary, otherwise, they will have some other problems which can be

sorted out.

So, we have come to an end of the chapter as well as the end of the course here now. So, I

would like to thank all of you first of all, if you are really come all the way to the end of this

course, many people drop out in between, does not matter. So, thank you all, I thank my team

of TA's, who have been especially useful for even getting the material in order and all that

and they will  be also helping you all the time in understanding this one, they have been

helping you for in the tutorials or what you call assignments and so on, also in the discussion

forum. So, big thanks for my team. 

Not only that, the team from NPTEL they have been very-very encouraging and very helpful.

So, I thank them all. See you some other time. Thank you.


