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Hello, welcome to Module 61 of NPTEL NOC an introductory course on point set topology

part II. So, in this chapter we will now study 2-dimensional manifolds. For short we call them

surfaces, later on you may restrict the word `surface' for a suitable class of 2-manifolds. So,

this chapter is going to be not a rigorous one, but intended to be expository, and introductory

for things to come, like, motivating you people to study algebraic topology, and differential

topology, and so on, manifolds in general. 

(Refer Slide Time: 01:33)



So let us begin the study of surfaces with the good old technique of paper models, which

everybody uses. So, I begin with an example here which you are familiar with namely, in

general,  in  mathematics we call  a cylinder  to be any space which looks like   cross an

interval. Modelled on the most familiar object namely when  is equal to a circle. When  is

the circle, circle cross an interval is a typical model for the cylinder that you have studied

even in your 10 standard and so on. So, the surface that we have here is not general 

but some curve cross interval, so that is the most general cylinder as such. But if you want

real meaning of cylinder let us stick to the classical notion when  itself is a circle.

When I say circle, I mean only up to a homeomorphism. Therefore, you can take an ellipse

also no problem. So, when you take circle cross ,  is an interval, its boundary will be circle

cross boundary of . At two different edges. For example, if  is just  the closed interval,

then  and  are the boundaries of . So all these things can be verified. The

point is I want to use a paper model for this one namely, I start with a rectangular piece of

paper which is representative of (as a topological space) . But we were looking at

modeling so you have to take a piece of paper which represents  as a topological

space, the subspace of .

And then what we are going to do? To produce a circle from one of the factors, and keep the

other fact the same,  we identify,  with  fro all . So, the first on the factor,

the endpoints are identified. That I have to do for every   inside the second factor namely

 here, so that is the identification on . So, very straightforward identification which

gives you a cylinder, this much we already know.
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On the other hand, while identifying, if I just turn around the two sides namely, here I have

this edge   and the second one is  .  Instead of   going to  , I turn it

around, namely  going to . So,  is identified with . Then what I get is the

so called Mobius band. You must have studied this before. If you have not, you should do

that  now,  namely,  actually  work out  these  two operations,  and see that  they  give quite

different objects. At whatever level you consider, these two are quite different objects. Even

in  the  layman's  language  or  in  the  language  of  a  topologist.  So,  what  are  the  different

topological aspects of them, that itself is an interesting study. So, this you must have done. If

you have not done it before,  we can do it at some other time, there is no problem.
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So here is the way the cylinder and the Mobius band are represented diagrammatically. Take

this model here namely this is , there is no price for keeping the length the same

there is no need. And then you identify this edge with this edge as the arrow indicates, the

arrow is indicating how you are going from one to the other. Here the arrows are reversed

you see, this is going to give you the Mobius band. Of course, when you actually identify it,

this one will give you the annulus, which is equivalent to a cylinder and that will give you

some surface like this where it will be a twist here, and the resulting object is not a part of the

plane.

Here I have deliberately shown it as a subspace of the plane itself which is possible for a

cylinder. However,  this cannot be done for the Mobius band, there will be some crossing

over. So, this will actually hang in the third dimension. So, that is a Mobius band. So, these

are the paper schemes. So, just indicate this way, you have to understand that these two edges

are identified, so that is the meaning of a paper scheme. So, with a piece of paper you can

actually perform these identifications also, so that is all whole idea.
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But there is other thing that you have studied in your part I, namely the Torus and the Klein

Bottle. The Torus is got by in the first scheme here, namely again the same rectangular piece

of paper, the opposite sides here are identified, these and these the same orientation like that,

here also same orientation. Whereas, in the Klein bottle one pair is identified with the same

orientation and the other one there is a twist, the orientation is reversed here, so this gives you

the Klein Bottle. This will give you the Torus.

Now if you use a paper, you cannot actually perform these identifications to get even the

Torus, forget about Klein Bottle. For Klein Bottle, even if you use a rubber sheet instead of a

paper, you cannot perform the identifications inside . But for Torus, if you have a rubber

sheet you can perform just like a like a cycle tube. But if you have a paper, of course 1 pair

you  can  identify,  after  that  the  second  pair  cannot  be  identified,  without  crumpling  the



resulting cylinder.  Once  you have  got  a  cylinder  you cannot  bend it  to  identify  the two

boundary circles there, because there is some rigidity with the paper also, it will crumble, it

will not represent an embedded object in  , as desired.  So, for that we will have to use

different tricks.

But, so finally, what I want to say is that the so called experiments that I am going describe

here, they are partly experiments which we can actually perform; rest of them have to remain

only thought experiments. Thanks to this word `thought experiment' the word introduced by

Einstein, I think. So, this is what we can do finally.
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Now let me recall that we have already verified that the standard -sphere is a surface. All 

contained inside , they are  -dimensional manifolds that we have seen. But now I am

going to give you I am going to recall that you have also defined the projective spaces. In

particular, the projective space of dimension 2, , which can be obtained as a quotient of 

by the antipodal action, namely   being identified with   for all   in  . So, that is the

projective space. We can use the notation  from  to  to denote the quotient map. Also we

can use this square bracket  to denote the equivalence class of , where  is inside . The

square bracket  will be inside .

Note that if you take all points  inside , namely, satisfying summation  equal

to , suppose you put the condition,  is positive or  is positive or  is positive and so on,

those are coordinate neighborhoods in  , each of them will be mapped homeomorphically



onto some oper subsets of   because, the moment one of the coordinate is positive, when

you take the action, it will become negative so, those two will be disjoint, so only one of

them will be there, so  will be injective on each of them. 

And all points of  are covered by these three open sets. Taking any  in

, you can change the sign to make one of the coordinates  to be positive signs and make it

positive.  So,  the  above  three  open  sets  cover,   entirely  and  they  are  each  of  them

homeomorphic to an open subset of , because they are now homeomorphic to coordinate

open subsets , via , they are actually discs inside , they are homeomorphic to open some

discs inside   also. Therefore,   is a locally a Euclidean space is of dimension  .   is

compact therefore  will be also compact because it is a quotient. Image of the compact set

under continuous map is compact. So, compact and well you can immediately see that it is it

is actually second countable also no problem, but what is important here is to see that  is a

Hausdorff space. Then it will be a -manifold.

So to see Hausdorffness,  there is  a general  thing you have studied, under group actions.

namely, if  you have a finite group action on any Hausdorff space, and the action is fixed

point free then the quotient space is automatically a Hausdorff space. In particular, this action

is just the  action . You can immediately see that given any point  and , so you

can separate them by this method same thing can be strengthened as follows. If you have two

distinct points  , they correspond to four distinct points in  . Take the minimal

distance d between any two of them and take open balls of radius smaller than  it follows

that their images will give didjoint neighbourhoods of  and  in . 

So,  is a nice examples of a compact -manifold though a little non trivial one. 

So remember this Klein Bottle is actually a little more complicated than the projective spaces.

The Torus is simpler, you can see the image of it in   itself. All of them are manifolds

without boundary, whereas, the cylinder and the Mobius band these are much simpler objects

in some sense, they have boundary, one has two boundary components, and the other has

only one boundary component, which is obviously a circle. 



So, so far all these examples are all familiar objects to us. The whole idea is to get to the

theory slowly through such examples. So, do not hesitate if you have any questions you can

raise right now. So, I do not want to state much theorems here, but try to give you glimpses of

what  are  the  things  happening  here.  So,  I  have  given  you  explicitly  how  to  get  the

Hausdorffness in one such case. 
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So schematically, even  and  can be represented by a paper scheme. Not with  rectangles

always. In general, you can just take some disc and identify some portions of the boundary.

So, that is what I want to tell here. 

Check that the quotient map  from  to . Restrict  to just the upper half sphere, viz., all

 in , with . So, let us call this . Then the entire thing below is covered

because everything else is minus of that, we do not need that  separate representations for



minus of some point here in . We do not need that. So, if you just take  and then restrict

 the quotient map on it, that itself is a quotient map. Therefore, you can think of   as a

quotient of the closed upper hemisphere which is homeomorphic to . 

Now the identification is occurring only on the boundary of , which is a circle contained

inside . So, what is the identification? Identifications, again are  going to . But it

is performed only on the boundary. So, you can think of  being obtained from the unit disc

 in , by the identifications on the boundary circle, .  

See, as the point  moves along the circle it as moves counterclockwise,   will also move

counterclock wise. In the picture we have indicated with arrows. The boundary is divided into

two parts, which are interchanged under the antipodal map. So, the identification can be just

carried on as  moves along one of then arcs. 

On the  other  hand,  look  at  this  picture  here.  Again,  you  have  a  -disc  here  and  we are

carrying  out  identifications  along  the  boundary  circle.  This  time  we  use  the  action

. As the point moves like this its image will be moving like that, that is the

homeomorphism. What is it? It is just  going to  you can say or just .  

 

So, this is another paper model you can say for the  -sphere. And this is for the projective

space . Try to perform these two with a paper model, you may not succeed. However, there

are models for the first one. 

So this is just like a lady's purse, which is a snap-shut purse, just close it up like that. So,

something like this you have seen perhaps,  the purse like that. So, that will give you a  -

sphere representation. 

However,  logically  (it  is  possible  to  show  that)  you  cannot  actually  perform  the

identifications in the case of this projective space. There are deeper reasons the projective

space cannot be embedded inside  , so you cannot have a model representing projective

space inside .
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So motivated  by  these  experiments  in  simple  situations,  we  now consider  the  following

general process for obtaining compact surfaces with or without boundary. Anything which

you want to perform it has to be a finite process, so compactness creeps in. So, you start with

a piece of paper, so it is compact, so everything is compact now. Compact with or without

boundary both of them we will consider. The Mobius band and the cylinder etc. are easy

examples, let us not exclude them. Let them be there. So, begin with the 2-disc that itself is a

2-dimensional surface, it has a boundary, so boundary is non empty. So that is the starting

point, very nice.

Now what do we want? Any homeomorphic copy of the disc will do the job. We will also

call such as space also a disc. So, let us fix an orientation on the boundary once for all. The

boundary is one single circle. So, for definiteness let us say the counterclockwise sense that is

the standard orientation. Next, you select a finite number of points, at least two of them on

the boundary so that the entire boundary is cut out into finitely many pieces each of them a

copy of the closed interval  . You do not actually perform the cuts but we just imagine

that.

So like if you have an interval cut it into n parts means what? You are taking a partition

 ... and so on. So, writing less than less than less than is not possible in the circle, but

orientation makes sense. You can take points, k points of the circle and then you can label

them  in  a  counterclockwise  sense  .  So,  these  counterclockwise  sense  of

labeling is unique up to a cyclic permutation, why? Because you can start from any one of the

 points and then you have to end the labeling just before you hit again that point where you



started. Do not repeat, that is all. So, that is the way you label the points, points which you

have chosen on the circle.

Let us call them vertices and then the resulting arcs there, we will call them edges, this is just

for convenience. Now label these arcs, (forget the labeling of vertices) with letters, again in a

counterclockwise sense, just the way you did for vertices. That is what I am doing. Again,

you may start at anyone of these edges while labeling, then you will get a different labeling,

but that labeling will differ by a cyclic permutation that is all. 

So,  you are  allowed while  labeling the  edges,  to  use the  same letter  at  most  twice,  i.e.,

repetition is allowed but only once. That is all. So, , and so on, but the next one may

be again a next one may be, and after that you should never use   and   because you have

used them already twice. So you have a finite sequence of letters. 

So next, look at any one of the letter  which occurs twice in your sequence. So, look at it and

you have freedom to put a superscript  or  on it. If you choose to put  that is as if you do

not have any superscript there just the way you write the number  to mean . However, 

is different. Similarly, a  superscript has a special significance which we will explain soon.

The same thing you could do for all letters, but it serves no purpose to put a superscript on

letter which occurs only once in the sequence. 

So here is an example, one sequence consisting of two letters, , , another one just letter

two , . The third one is , the 4th one here . So, here in the second one, I have

a letter which is repeated but the exponent is not changed. Now the idea of a repeated letter is

to indicate which edge is going to be identified with which one.

Let us look at the example . The edge is labeled  and the second one is . That

means we are not going to identify these to edges ever. But the next one is labeled . So,  I

am going to identify it with the first edge, but the way I do that is indicated by the exponent.

Here it says, that I have to carry out the identification in the opposite direction. You see the

standard  orientation  on  each  letter  without  any  exponent  is  counterclockwise,  but  the

exponent  indicates that you have to reverse it. In the diagram it easier to represent it just

by putting an arrow in the current direction. similarly, here we have   which means the



fourth edge will be identified with the second one in the opposite direction. So, this is the

scheme for the Torus : . 
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So, all these things are listed here, six different schemes and the corresponding diagrams.

So they are my starting examples, easy examples. I have redrawn them, I do not need now,

any of these rectangle or convex polygons and so on, one single shape will do viz., the 2-disc

itself. So, all of them are drawn on the disc now. So, the first one is , this will give

you a 2-sphere. the second one   represents  . This   will give you what?

The pair  when we have identify this will give you the cylinder. The edges  and 

will automatically become the two boundary circles. The fourth one will give you a Mobius



band, . So the edges  and  are left out, but after identification they will give you one

single circle. 

The  fifth  example  is  the  Torus  and  the  last  one  is  the  Klein  Bottle.  The  schematic

representation of the 6 of the surfaces that we can access easily.
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Now let me try to generalize this kind of thing. This is the preparation needed to perform the

next step `edge identification'.  I have just chosen some scheme, what I am going to do? I am

going to perform some identification on the edges. how? Namely follow these instructions

whatever they may be. Whenever an edge is repeated identify those two edges, how do you

identify? Depending upon the exponents. If you have , in the same way. Remember you

have to fix the orientation on the entire circle right in the beginning. Then any letter  for an

edge indicates that you have to take that edge with the induced orientation and if it is  ,

you have to take it with orientation opposite to the induced one. 



So identify means what, you have to use a homeomorphism from one edge to the other which

preserves the chosen orientations on each of them.  So, only thing that matters is whether you

finally have homeomorphism which preserves orientations or reverses orientations.

 

Some edges  are  never  identified  with  another  one  in  the  scheme,  because  they  are  not

repeated,  so  those  edges  are  called  free  edges.  So,  what  will  happen  to  them when you

perform all the identification? Those free edges will remain free, so they will be the boundary

parts of the resulting surface. This is what we want to see now, let us see.
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So it does not take much effort to see that the homeomorphism type of the quotient space

only depends upon the isotopy classess of the homeomorphisms used in the identification

process. So, this is what I meant by those exercises 12.42, 43, 44, 45 whatever. I hope you

had some time to spend it, even if you do not solve them. What is the meanings of isotopy



etc.  You  must  have  understood  by  now.  Since  there  are  exactly  2  isotopy  classes  of

homeomorphisms from  to , you can call them orientation preserving and orientation

reversing.  They have  been  encoded  in  the  rubber  sheet  scheme  by  what?  by  putting  an

exponent on some letters representing edges. 

So it  follows that  each  rubber  sheet  scheme defines  a  unique  quotient  space  there  is  no

ambiguity in the definition of a quotient space obtained by using a scheme. In other words for

all matter, the scheme represents the entire topology of the quotient space.  So, this is the

underlying principle. 

We are not going to prove any of these statements here, by the way. It does not take much

effort to see that the homeomorphism type or quotient space only depends upon the isotopy

class of homeomorphisms used in the identification process. So, I repeat just that but I do not

prove it.
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Now why is the quotient so obtained is 2-manifold? That is a more serious more mundane

question, that we should try to understand, manifold with or without boundary. So, I already

told you the role of free edges. On a free edge, at the most the two endpoints, the vertices,

may get identified, because at each vertex there are two edges incident, so,  even if one of

them is not free is not free that will affect the vertex. If in this process, the two end points of a

free edge get identified, then the edge will become a circle in the quotient space. You can

look at any interior point of a free edge. On one side there is the disc and on the other side

there is nothing. So you can see that it is actually a boundary point. We will we will make it

clearer.

Clearly since there is no identification at an interior point of the entire disc, the quotient map

 restricted to the open disc is a homeomorphism onto an open subset of the quotient space.

Therefore, at all those points our quotient space is locally Euclidean of dimension 2. So, now

move to a point on the interior of an edge, like this. This is an edge but do not look at the

vertices for the time being. Look at an interior point of the edge. At that point what happens?

It is possible that this letter  is repeated in the scheme that means, this edge and the repeated

edge are getting identified, what happens? This half disc neighborhood here and half disc this

neighborhood  there  they  will  get  identified  only  along  the  edge  to  give  you  a  full  disc

neighbourhood around the those points, in the quotient space. So the image of that point

becomes an interior point with an open neighborhood homeomorphic to an open disc inside

.  So, therefore,  at  these points also we have the local Euclidianness.  What is left out?

Image of all these vertices that is not very easy to handle. When you take the image of all

these vertices and their neighbourhoods in the quotient space is it homeomorphic to again a



disc or a half disc or neither? I merely assert that at these points also, we can show that the

quotient space is locally Euclidean of dimension 2, without adding any extra condition on the

rule of identifications. I will skip the proof for that.
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But I will assure you that you do not have to put any more conditions. My paper scheme is

well defined, it will always produce a manifold with boundary provided there are free edges

otherwise it  will produce a manifold without boundary. So, I want to tell you that do not

perform any extra identifications of vertices on their own, you are supposed just  identify

certain  pairs  of these as  indicated.  After  doing all  those identifications some vertices are

automatically identified with some other vertices, because identification is taking place on the

closed edges and not on open edges.  So that is a point to be noted here. 
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Now I want to state something. Actually, this is a big theorem now, immediately. A classical

name for a rubber sheet scheme in which all edges are repeated is called a canonical polygon,

everything is repeated, I mean repeated only once. So,  or something like that, no

free edges are there, that is the meaning of that. Such a scheme will be called a canonical

polygon. I have not much use for this terminology but I will use it because it is classical and I

want to state something. Among these canonical polygon there are some which are called

reduced canonical polygons. I will list them and the beauty is that this list is so complete that

it will represent all the compact surfaces, compact, connected -manifolds, without boundary,

because there are no free edges.

The first one in the list is a lonely element, it is a very typical element, it is like you have 

before you list natural numbers. So, , you know what it represents. We have already

done that  represents the -sphere. Then there is list consisting of an infinite sequence

of members, indexed by , where  runs over all natural numbers.

They  are  .  There  is  a  definite  purpose

denoting this number by  . This   is short for `genus'.  So that the standard name for the

surfaces represented in this list being torus of genus . Suppose I stop at , then I know

that this is nothing but our standard Torus. So that Torus is called Torus with genus . You

can call this member in (i) a Torus of genus .  But nobody uses that kind of terminology.



So these are all closed surfaces that means they are compact and without boundary. Also they

are all orientable. So, this list gives you all of them as  varies over . 

The third list is again an infinite sequence indexed by natural numbers but here I use ordinary

. They are . (Do not write  etc, that makes no sense. These are

sequences there is no algebra here, third are not multiplied here). So, as  varies you know

the first one  is nothing but the projective space.

So you may wonder where is the Klein Bottle?  It is neither here nor here now? The story is

that the Klein Bottle and all those non orientable surfaces are all hidden in the (iii) 

So,   will  represent  the  Klein  Bottle,  you  understand.  So,  in  general  what  is

happening if you do not use reduced canonical polygons? As listed? Several paper models

several rubber sheet models may represent the same surface. So, here the list is shortened and

now the claim is that every member here is a distinct member up to a homotopy type, upto

homeomorphism type, and actually,  even upto diffeomorphism type. That  is the strongest

theorem here. Two of them will be different if they are listed in different sublists (a), (b), (c),

first  of all,  and then, if  two of them belong to the same list (b) or (c) then the different

numbers here, will tell you that they are different homotopy types That is the strongest.

If two things are not homotopic to each other, they will not be homeomorphic to each other,

if they are not homeomorphic to each other, they will not be diffeomorphic to each other. So,

this classification is very strong classification. Up to homotopy type they are different, so that

is the meaning of this one. So, let us stop here today, I will tell you a little more about how

these things actually look like geometrically, how the Klein Bottle is hidden here, etc. So

those things I will try to tell you next time. Thank you.


