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Hello.  Welcome  to  Module  60  of  NPTEL  NOC  an  introductory  course  on  Point-Set-

Topology Part-II. So, today we shall continue our classification of 1-dimensional manifolds

which we started last time. Beginning with any manifold with or without boundary the first

thing we did was to reduce the proof to the case of manifolds without boundary. And now,

look at a manifold  without boundary.



Take a cover by coordinate neighborhoods, as soon as there is an open cover there will be a

countable subcover because the manifold  is II-countable. Next thing we want to to is how

these members of this cover, which are all homeomorphic to open intervals intersect each

other. 

So, we made two list  of things which we want  to happen and one of  them we consider

namely, when the two open intervals like this, they actually intersect in a very nice way like

this, then we could get a map to the union from open interval which is a homeomorphism. So,

the union itself was an open interval with the homeomorphism. So, this was a nice case. The

next case that we want to consider today is that two of them have intersection consisting of

two connected components and they intersect like this properly not like that, or that and so

on.

So, the two things are coming this way, just the way in the first case and the other one also

coming nicely like that. So, this is the case we want to understand now, and this is another

desirable case. So, that the first one. After that, we will see that these are the only two cases

possible. So, that will allow us to complete the classification. 

So,  start  with  any  connected  1-manifold  ,  let   from   to   be  any  to  local

parameterizations, such that

(i)  consists of two components. I am just labeling the two components .

(ii) The first one  is open interval . (See the domain of  is . So, this

 is  is a non trivial assumption.) And  is . So, here it is the left

end and there in the other one, it  is the right end. So, that is the hypothesis, these are all

hypotheses.

(iii)  The  third part  is  that   (exactly  the  opposite  here)  is   and   is

.

So, this is the other end right end and this is the left end and so on. 

(iv) The fourth condition is, now look at  , starting from two parts of the interval

 go via , then follow by  back to the part of the interval , so,

from interval to interval, this is a homeomorphism, that must be order preserving on both the

intervals, namely, the first portion coming from  and second portion coming from , first

portion will be  to  and the other one will be from  to . So, both

of them should be order preserving. Then  is homeomorphic to .

The conclusion is of course quite strong.  There are four different conditions. I have assumed

here. In the earlier case, we had assumed that none of  cover the entire union, which is



the  same  as  saying  one  does  not  contain  the  other.  Remember  that.  In  this  case,  the

assumption that the intersection consists of two components automatically gives you that one

does not contain the other.  

So, there is no need to separately state it. So, the conclusion is that the union will be now

homeomorphic to the circle  itself,  the entire   is  circle.  In  other  words,  whenever such

things happen,  there is  no other  open subsets needed to cover  .  The whole   will  be

. So, this is the whole idea. Let us see how the proof goes. This proof is not all that

difficult, once you have understood the previous one.
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So, here, just look at the picture.   to  , you have one coordinate neighborhood  .

And here  to , you have another . Of course, the final picture, I have put it nicely,

but right now you have to assume that this is some manifold that is all. So, this is   part

below homeomorphic to that one and that  part above, and the intersection is this .

So,  comes from here to all the way here up here and  is from this point to that point.

So, these two are the components of the intersection . Now,  is this part ,

 is  . Similarly,   is (c_2, b_2) and   is  . Not only that,

when  you  come  from  here  to  here  by   then  take   to  here,  So,  you  get  a

homeomorphism from  to , that must be order preserving. Similarly, you start

from here   with  , come here to   and then go by inverse image of  , you get a

homeomorphism from  to  that must be also order preserving. So, these are the

assumptions that I have made. The conclusion is that this  is a circle, not only that,

once you have that one there is nothing else  is a connected manifold. So, it is the whole of

. This is what we have to see 

So, pick up any two point  and  as shown here.

Namely,  and . Then there exists unique points  and . What are

they? Look at the image of  here and that is the image of something here because these are

homeomorphism anyway. So, there is a unique  here which comes to the image of , viz.,

 and , they are also equal to  and , respectively.



So, you have started picking up these points. So, clearly these  and  will be obviously lie

in  and , respectively. that is all. After that what you do?
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Now, you just define the map  from  closed interval to  by the formula:

In the first part, it is , in the second part it is . The only thing is you have to adjust the

whole thing by re-parameterizing the intervals. And where do you break up? First take t upto

, I am going to take , from  to , I am going to take . Here in the picture it is clear.

So, from this point , I will map up to this point , using . For  to , I will use  from

 to . I will ignore the rest of these overlapping parts. But , I will re-parameterize by

. Similarly,  is parameterized by . So, map will be like this. So, this part is

coming at this part coming here. So, the arrow is here, this arrow is here this way, so you

have to understand. So, this is counterclockwise since I have taken here.

So, all the time after reparameterising I just take , or equivalently . In

particular,   is being mapped first to  and then to . Go all the way up

till here and then pick up  here. So, the idea is clear and formula is also clear. So, take the

order preserving affine linear homeomorphism  to   and similarly from  to

. So, that is all idea. So, this are the maps. 

So, the first one is  . When   this is   and  , (  above  

below cancel out), plus  and minus  cancel out you get . Similarly, when  here, this

is  and when  this will become . So, take  of this, and  of that.  



When these two points are the same, namely for  , there are two formulas you have to

see they are the same. Why they are same? Because  of this point and  of that point are

the same. Therefore lambda is well defined and is continuous. 

Similarly,   is  equal  to  ,  viz.,  at  the two ends,   is  given by   and  

respectively and they are the same. So, that is what you have to see. So, what happens is first

of  all  on  ,  it  is  continuous  because  on  the  common  point  they  agree,  so  it  is  a

continuous function. In each interval  and  is given by a homeomorphism.

So,   is injective because they are mapped into different components, different parts of the

codomain. And here, here comes the important thing that they are order preserving. So, there

is a common portion here namely I have taken this part. So, this part is covered by  also. I

have covered this part, this part have been covered by .

Also,  on  the  intersection  they are  order  preserving,  therefore,  the  leftover  parts  are  also

covered  by other  map.  This  argument  is  similar  to  what  we have  seen  in  the  first  case,

yesterday. So,  is surjective onto .
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So, the entire lambda is injective except that the two end points  and  are mapped to the

same point. That is well and good, that is precisely what we wanted here. Therefore,  will 

factor down to a continuous bijection  from  to  and , under the quotient map 

from  from  to .

So, under that, this will give you a homeomorphism now, continuous bijection from the circle

to  into  ,   is  compact,   is  Hausdorff.  It  is  surjective  onto  .  So,  it  is  a

homeomorphism of  , onto its image and the image is   that much we know. But

then,  is open as well as being compact, it is closed also in . Therefore, it must be

the whole space because  is assumed to be connected. 

So, every bit is used here.



So, we have completed the proof that  is actually homeomorphic to the circle in this case. 

So, two important cases which will produce the two different members of the list have been

covered. So, now, the claim is that there is no other case. 
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Having taken care of these two favorable situations, we now claim that we are always in one

of these two cases. What is the meaning of that?
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 Let me elaborate. Start with a Hausdorff space  and  from , (I have changed

the notation for the domain intervals, this does not matter, you could have taken any open

intervals)  to   be  homeomorphisms  onto  some  open  subsets   of  ,  respectively,



neither of them contained in the other. Assume that the intersection is non-empty. Then these

are the only things that can happen:

(i) No component of , (which I have assumed, is non-empty), will be an open

interval of the form  where, . Notice that first of all,  connected components

of an open subset of  are open intervals. The claim is that those open intervals none of

them will be able to avoid both the endpoints of , they will not be away from both the

endpoints. That is the meaning of saying that  does not occur.

Then what else can happen? It can happen that only if one of the endpoints must be there in

the interval. So, I assume  belong to a connected component. If then  is also there, it is

will be the whole space that is not allowed. So, it is of the form  for some .

Similarly, it can be  for some . So, there are only two possibilities. Therefore,

the  conclusion  is,  in  particular   has  at  most  two  connected  components.  This  is

obvious  because  connected  components  of   are  in   correspondence  with the

connected components of  because  is a homeomorphism. See, this  and 

are sitting in the topological space  , but here we have come inside an open interval. So,

there you can see that there are only two possibilities, at the most you have two components.

So, this is the strongest thing you have to observe. 

(ii) Next,  if   is connected, (that means only one component case) then   is

homeomorphic to an open interval.

(This is our first case. So, that is what I have to verify.)

(iii) Lastly, if  has two components, then  is homeomorphic to . This is the

second one.

So, this is precisely the meaning of saying that there is no other possibilities. Indeed, the

argument for this has been already used by us. Any way let me elaborate on this one.

(Refer Slide Time: 19:43)



First of all, note that  is a proper open subset of . It cannot be the whole

space because neither  nor  is contained in the other, so  cannot be the whole of

. 

Moreover, its components are all homeomorphic to open intervals and they are in one-one

correspondence with the components of  because  is a homeomorphism.

The emphasis here is that none of them will be equal to some middle portion of , i.e.,

 such that . So that is not possible is the claim.

Assume on the contrary that one of the components of   is of the form ,

with  . Suppose it has happened, we want to say it does not happen so we

must get a contradiction. 



Then look at  .  That  is equal to an open interval   contained in  .

Here, I do not know what are  and . I do not care either. Only thing you know is that 

is not the whole of . Let us see. That may be useful or it may not be useful. 

So,  let  now   from   to   denote  the  function  .  The  reflection.  By

replacing  ,  I  do not  want  to  change the  ,  with  which something bad  has happened,

replacing  by , if necessary, 

we may assume that   from   to   is increasing, i.e, order preserving. The

other possibility was that it is order reversing, and then only take this composite with . If it

is order preserving already, I do not replace  . Do not change it unnecessarily, that is all.

When if it is increasing do not do anything, if it is not increasing that must be increasing

because there are only two possibilities for a homeomorphism of intervals to intervals.

So, we have  is increasing. Since  is a proper subset of , it follows that

, or  (or both). There are only two possibilities, the last being covered

by both.

So, at least one of  or  must be strictly inside the interval  and that is going to cause

us problems. Namely, consider the former case: suppose c is in the middle of the interval

.  What  happens?   and   they  are  coming  very  near,  but  they  are  not

identified, in . So,  and  are two distinct points of  which cannot be separated

by open sets in  . In the latter case the same thing happens with   and  . So, in

either case you have got a contradiction to the Hausdorffness of .
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So, here is the picture fully explaining the situation. This is your  and that is the portion of

. Other portion I have drawn I do not care what is happening. The  a coming like this 

part is coming like this,  is some in between  to coming here and  to  just comes here,

this portion and this portion will be in every neighborhood of this  as well as  as well as .

The  and  are not,  or  are distinct points.

Sorry, not this portion. This, the other portion because they have to continue for afterwards.

This  is  not  the  endpoints  of  the  intervals.  This  was  very  common.  So,  for  every  open

neighborhood of  inside the  there will be some portion every common with  of it.

This is the intersection part on the left-hand side. Similarly, here what happens there will be

on the left-hand side there will be intersection part.

These portions are distinct fine, but as soon as you hit it  ,  ,  . So, they are the

image, they are there inside our . But they are distinct points they are in different ones, they

are not assumed to be an intersection, they are open intervals. So, these two points contradict

the Hausdorffness of the interval. So, some  to  on this part we will be coming there, that is

all. So, I do not know how many I have drawn the rest of them.

So,  to  that will be hitting, that is the whole idea. So, they are in this part of this one. Rest

of the part here they will be common. So, here all of them will be common. So, you cannot

separate them by disjoint open subsets. So, that completes the proof of this first claim that no

interval can be of this form. Once you have that, you have only at the most two components

for intersection.

Now, I have to say that all hypotheses of the first case is covered or all the hypotheses for a

second case is covered that is all. Then these (ii) and (iii) are the only possibilities. That is the

second part and third part here.

(Refer Slide Time: 26:53)



So, second part , the first part from whatever we have seen it follows that for each ,

 is of the form  or .

So, here for , there are these two cases, and for  there are two, so all in all there are four

cases possible, but they are all symmetrical. So, for definiteness you just cover any one of

them, argument will be same in other cases. So, consider the case when these intervals are of

the form   and   for   and   respectively. We claim that   of   from

 to   is  decreasing.  (Recall  we  are  under  case  (ii)  when we  assume  that

 has only one component.)   

 

If on the contrary, it is increasing what happens?  and , they will be coming very

close to each other, but they are different. So they will violate Hausdorffness.



Now, consider . Then the two homeomorphism  and  fit the

hypothesis of lemma 12.39. Now, they will be exactly like and we can join them. No need to

worry about what is happening here. So, we are done. So, that is the case (ii).
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The case (iii) is also similar, but I have to show that we are inside the second case correctly.

Now, we are assuming that  has two components. It follows that  must

be again end intervals i.e., of the form  for  equal to  and . There are two

subcases to be considered again here, namely, (a)  or (b) . 

As soon as you select one of them, soon as this happens the other one namely the image of

 will be also fixed, no choice for it. You have freedom only to choose where one of the

component goes. The other component has to go to the remaining component there is no

choice.

So, I have only these two cases here, the first component here goes to the first component

there or the first component goes to second component there, so these are two cases. Again,

by symmetry I have just see what happens in the first subcase. So, let us take case (a). 



For the same reason as in (ii) we conclude that  has to be decreasing from 

to . 

So, let us change  by composing with reflection so as to make it increasing here. But then a

change will occur for the other part  also. The point is that you can choose  the order

only on one of them by changing the sign, the order on the other part will be automatically

decided, though the intersections have two different components. As soon as you adjusted the

first one correctly, you may or may get the second one correct. So, that is why I have written.

In this picture, I have shown this portion coming here this portion coming here. So, now, if

you change this interval, so that the both of them are like this, then you are in a nice shape

that is all.

Whether you want to do it  or not it  just depends upon you, but here we assume that we

replaced  with . We now claim that the homeomorphism  and  fit the hypotheses of

lemma 12.40 completely. 

Clearly  of  from  the initial segment goes into the far end . So, both of

them will be increasing. Finally, it follows that  is increasing on both the parts.  For,

otherwise you will have   and   will be violating the Hausdorffness. So, that is

why we are in the nice situation of second lemma there.

Therefore, the conclusion is that, in this case, the entire manifold has to be . Not really. We

do not need that right now, we just do not, because I have not assumed that  is connected

here. So, we only conclude that  is , that is fine. This is the lemma in which, which

just says that, whatever we desire only that will happen, that is all. Now, let us complete the

proof of the theorem.
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Recall that we started with a connected 1-dimensional manifold. By II-countability, we get a

countable cover  of  by open sets, all of them homeomorphic to , say say  from

 to  are the homeomorphisms. Inductively, we define a finite or infinite, we do not

know,  but  countable,  increasing  sequence  of  open  sets   in   such  that  each   is

connected, union of  is the whole space . 

That is all first we have to do this way. But we will  do the same thing in a much more

elaborate way. So, I will describe it as follows. So, how do we do that? 

Start with . So, you have got a countable cover. So, you have indexed them in some

manner with positive integers. Never mind, but that indexing may not be very good. So, we

are going to do some changes here. So, start with . Having defined , what I am

going to do? Look at the set  of all  such that  is not contained  and  intersects .

So, for , so  is here is defined. What is this ?  consists of all , such that  is

not contained inside   and   is non-empty. Now, suppose   is empty. That means

either all other   are contained in   or none of the them intersect  . In the first case we

have nothing more to prove. The second case contradicts the hypothesis that  is connected.

Therefore,  we  may assume   is  non empty.  There  is  a  minimal  number   and  define

. Exactly similarly, having defined , if  is empty then we have arrived at

our goal. Otherwise define , where  is the least element of .

 



Clearly we get an increasing sequence of open sets   finite or infinite such that their

union is  ,  each   is  connected  and   is   where   is  a  coordinate

neighbourhood.  Note that several of  may be left out because they are covered by the union

of others.   
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Now, inductively, we claim that each   is homeomorphic to an open interval or it is  .

There are two cases at each stage. As soon as it is , we know that we have come to an end.

So, what is the other case? The other case is that each time you get  is an interval. There,

we have not yet completed the proof. Each time it is homeomorphic to an interval, if you

have stopped at a finite stage, then it is okay it is an interval, you have completed the proof,

but it may not stop it may be an infinite sequence.

So, in that case, you have to write a small proof there, that is all. So, let us see why this

happens.  Clearly  for   because   is   there  is  nothing  to  prove,   is  already

homeomorphic to an open interval. For a general  , there are two cases to be considered.

What are they? By the previous lemma, we are in the situation of lemma 12.39 or lemma

12.40.

Accordingly,  we  have  the  above  two  conclusions.  See   is  an  interval  by  induction

hypothesis and  is also homeomorphic an interval. So, number of connected components

of their intersection is at most two. If it is one, then their union will be homeomorphic to



again an interval. If it is two, then the union will be  and the sequence stops. So, those are

two cases. 

Suppose now the sequence does not stop. Well, why does it keep going on? All the  are

are  homeomorphic  to  open  intervals.  And  we  have  got  an  infinite  sequence  of  ever

increasing. Why the entire union is homeomorphic to an open interval? This is what we have

to show.

Remember, these things are not happening inside , of course, that is the final conclusion yet

to be proved.  (I  mean finally,  it  is  so.  But  right  now you are working on an abstract  -

manifold. abstract manifolds, you want to show that the entire thing is homeomorphic to an

open interval, which is same thing as showing that homeomorphic to . So, that is the last

part here.
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Starting with the homeomorphism  (I am renaming ) from  to . 

Apply proposition 12.30 with these , (remember this proposition) being

respectively equal to . And take  from  to  being any

homeomorphism, (here I do not know what it is, does not matter) we get a homeomorphism

 from  to , such that  restricted to the smaller interval  is your . 

is defined on  but on the larger one, the homeomorphism is modified so as to coincide

with  only on this smaller open interval.
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Inductively,  having got a homeomorphism   from   to  , so this is an inductive

constructuion,   and  so  on,   is  from   to  ,  similar  to  the  above step,

knowing that  is also homeomorphic to an interval, we get a homeomorphism  from

 to   such  that  restricted  to  a  smaller  interval  ,

(reduce interval by half on both sides), this . 

So, now you define   from   to   by the rule:   whenever   belongs to this

interval, . Given any  inside , it must be in one of these intervals.



Once  is in this interval for some , even if you take a larger value for , the value for 

on  this  interval  is  the  same  thing  because   they  are  all  equal  to   here.

Therefore,  is well defined. It is straightforward to check that  is a homeomorphism, all

that you have to do is to show that  is continuous bijection and an open mapping directly.

To show that  is an open mapping you can show that for any small open interval  , plus

epsilon the image is open, you do not have to show the that image of all open sets is open.

Image of every suuficiently small interval is open, image is open then the whole thing will be

open mapping.  So,  I  will  leave  that  one to  you,  but  learn  this method, how to patch up

homomorphisms.

If things are arbitrary homeomorphisms not agreeing with each other then you will have a

problem. So, when you have inductive steps like this, it is possible to patch it up to get a

homeomorphism on the entire thing. Why it is surjective here? Because union of all  is the

whole of .
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So, here are a few exercises which will help you to understand the next topic. So, take some

time to think about them even if you do not solve them completely. With those words, I will

just leave it to you to keep looking at them so that you have some time to think about these.

So, here are two of them. One is on quotient spaces, then this is our old friend about what is

happening to homeomorphism from one interval to another interval.

So, this is an old topic which I have been discussing several times here. So, there is some new

concept here called isotopy. It is just like homotopy. You might not have come across this

earlier. So go through that now.
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Then we have this transitive action. So, you have got these  's. So, can you see that they

are also isotopic to each other? This is what one has to think about. So, next time we will

study a little bit about surfaces. So, two more lectures on that. All right, thank you.


