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Hello welcome to NPTEL NOC a course on introductory points set topology part 2,  module

6. (Please note that module 5 was a live session). We are beginning a new chapter getting

right back into point set topology. Recall that in part 1 we have introduced several topological

concepts  like  Compactness,  Lindelofness,  separability,  first  countability,  and  second

countability etc,  which may all be called some kind of smallness properties. 

Then we also have introduced the , Hausdorffness( ) regularity, and normality. These are

called largeness properties. Now, the idea is to mix them up. Of course, one has to be a bit

judicious. A judicious mixture of such things is going to produce many, many interesting

results which are also useful. 
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So, today we will concentrate upon just one of these things, namely, compactness on one side

and Hausdorffness on other side. So, we are going to study Compactness and Hausdorffness

together.  We have  already  seen one such  application of  this  one,  namely,  if  you have a

continuous bijection from a compact space to a Hausdorff space, then it is a homeomorphism.
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This is what we have already seen in the first part. A close examination of this theorem tells

us that instead of having two different spaces, suppose you have the same set on which you

have different topologies. So, that then you can compare them by using the inclusion maps

from one to the other. If you have a Hausdorff space and then if you take another topology

which is larger than that, then we know that the inclusion map will be continuous. From any

topology to a larger topology, the inclusion map is continuous. 



So, it will be a continuous bijection. So, you can use this theorem to control many things.

Namely, if the smaller one is compact, and the larger one is Hausdorff then the inclusion map

is a homeomorphism which means that the smaller one is also Hausdorff, and the larger one

is compact. Indeed, this just menas that the two topologies are the same.  

So, this is the way comparing compactness and Hausdorffness. You know Hausdorffness says

there are lots of open sets, the compactness says there are not many open sets in some sense.

So, these come together very nicely. 
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So, here we start with very mild conclusion, start with a Hausdorff space and a subspace

which  is  compact,  the  same  thing  as  saying  that  the  subspace  is  both  are  compact  and

Hausdorff. So, start with a Hausdorff space . Given a compact subset , and a point  not

in , there exists disjoint open sets  and  in  such that  is in  and  is contained inside

. 

This  may remind  you that  you  have  similar  property  in  regularity.  So,  I  am not  saying

anything new here. Something subset is assumed to be compact not just a closed set here.

Then a point  outside this compact subset is taken. They can be separated by open sets, you

know disjoint open sets,  is inside ,  inside . There are people who want regularity and

there are those who want Hausdorffness. This will make perfect sense to both. More about

this point later-- what is happening here? So, what I am going to do is just go through the

proof directly now. 
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So, start with a point , find  and , a pair of disjoint open set such that  is in  and

 is in . Why this is possible? Because  is Hausdorff that is all. Now, we have done this

one for each   and   is compact. These  's are open subsets they cover   and   is

compact. So, that means that I have some finitely  so that which 's   cover the

set . 

Now, you see for each , I have a disjoint open set . So, I take  to be the intersection of

these finitely many open sets that is an open subset which will be disjoint from all the ’s

and therefore disjoint from their union which I take as . This union contains the entire of .

Also the intersection contains the point  so, we are done.

So, this method will be repeated again and again. Just watch out this one again. So, what I

have done, you have used the compactness of  after using separation by this Hausdorffness

we are extracting a finite cover, the finite cover allows us to take intersection of certain other

not from not for the cover itself for each member of the other things which are of interest. So,

there I take intersection, here I take union. So, we will keep playing this game again also. 
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So, as a corollary, every compact subset of a Hausdorff space is closed. Because, for each

point  in the complement, I have an open subset  disjoint from . So, if you take union of

all these  's, as   varies over  , that will be an open subset which will be precisely

equal to . That means  is closed.  That is the easy corollary. 
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The next thing is what I am more interested in, namely, every compact Hausdorff space is

normal. Note that the above theorem, that we have proved actually implies that a compact

Hausdorff space is regular.  Why? Take any closed set  inside a compact space it will be

also compact. Therefore, I can apply this theorem for every point outside , we will get these

pairs of open sets. That means  is regular. 

Now, we want to improve on it,  namely compact  Hausdorff  space is  normal.  Recall  that

normal means starting with two disjoint closed subsets  and , I must produce open subsets

containing them respectively, say  containing  and  containing  and  and  must be

disjoint. So, what we will do? We start applying the proposition.



First for each point  , (which is obviously not in  ), I get two disjoint open subsets

which I will label with, because they depend upon ,  and ,  is in  and the whole of 

is inside each . So, I am directly applying the proposition rather than just Hausdorff here.

This I can do because,  being a closed subset of  and  is compact so  is compact. Now,

let   be finite sub cover of  . How? Because this  is a closed subset of a

compact space and hence  is also compact. 

So, there will be a finite cover. Again as I indicated earlier, now I take  to be the union of

these  's. That is obviously an open set. But on the other end, I take just   equal to the

intersection of  .  Since each   contains  , the intersection contains  .  Being a finite

intersection  of open sets,   is  open.  Since   is  disjoint  from the corresponding  ,  the

intersection  will be disjoint from all the ’s.  the same kind of argument here. So  will

disjoint  from   itself.  So,  what  we have  proved now that  a  compact Hausdorff  space  is

normal. 
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Now, little bit more. Every compact regular space is normal. 

Notice that the earlier proposition actually implies that every compact Hausdorff space is

regular. That is what we concluded in the proof of the theorem above and later use only this

fact.  So, I could have just stated that there itself. In other words, this proof of the above

theorem actually gives you a proof of the statement that compact regular implies normal.

However, you must be careful about this. Compact regular spaces need not be Hausdorff.

Now write down a direct proof of this theorem as an exercise. 

Yet another condition under which a space becomes normal is the following. 
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Instead of compactness, you just put Lindelofness which is weaker than compactness. Recall

that Lindelofness means every open cover has a countable subcover. That is enough. This is a

bit of a surprise because I cannot take intersection of countably many open sets and say that it

is open. Yet we can make it work. So, we have sharpened our argument a little bit. How? Let

us see. 

Start with a regular Lindelof space  and two disjoint close subsets  and .  

Using the regularity for each point , we get an open set , such that  is contained 

and   is contained in   which is contained in the complement of  . This is because, to

begin with  is contained inside the complement of , which is open and  is closed. This is

another version of regularity. 

Likewise, for each , there exists an open subset  such that  belongs to  contained

inside  contained inside complement of . Here, I am just reversing the roles of  and ,

that is all. Now, using Lindelof property, we get countable sub covers  and  for 

and   respectively,  because   and   are closed subsets of a Lindelof space.  (Just like a

closed subspace of a compact space is compact, similarly a closed subsets of Lindelof space

is Lindelof. This we have seen earlier, it is not difficult. Once I say this one you can verify it

easily.) 
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Now, we appeal to a process which is quite common in the study of measure theory. (There

are a lot of exchange of techniques between the study of measure theory and the study of

topology. I cannot pinpoint whether this particular idea was first used in measure theory or in

topology. There are many such ideas.) So, what I do? I start taking  equal to .  is

an open set,  is a closed set. You subtract a closed set from an open set it still open. It is just

like the De Morgan law, it  is same thing as intersection with the complement here right?

taking  minus something.

Inductively, I define   equal to  ,   ranging from   to  . Union of finitely many

closed sets is closed. So, this  is open for each . Similarly on the other side define  is

taken as  setminus union of  ranges from  to , . 

Now,   and   are open covers for   and   respectively. I have just observed that

these are open. Why they cover? Take a point   inside . It is in one of the ’s, but I am

subtracting closures of some 's, here. But each  is disjoint from  itself being contained

in the complement of . 

So, when I subtract  or , points of  are not disturbed, they are there. That is why  is in

. So {P_n} will cover . Similarly,  will cover . Now take  as union of all these

 and   as union of all  . Then   and   are open subsets they contain   and  

respectively. That is easy. 

But all this circus you have done precisely to have  to be set. 



So, let us be convinced with why this intersection is empty. What is the meaning of this is not

empty? Take a point  here in both  and . This means  must be inside  for  and

, because intersection of unions is union of all these intersections , where both 

and  vary. So  must be in one of them for some  and . Without loss of generality, we

may assume that  is smaller than or equal to . (Otherwise you can interchange  and .)

Now  is inside  implies that  cannot be in any of these  where  ranges from  to . I

can now take , then  is not in  and hence  cannot be in , which is contradiction.

That proves the theorem.

 

So, this is the modification that we need to handle Lindelofness. Beyond countability, even
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So, here is a remark. In part 1, we have seen that regularity and normality do not imply each

other though seemingly normality is stronger because here we are expecting every closed

disjoint subsets to be separated in the case of normality, whereas a point and a closed subset

are separated in the case of regularity. So, initially, you may think that normality is stronger

than regularity. Under some conditions namely  ness, it is true. That also you have seen in

part I. (  implies  implies regularity and  is nothing but  plus normality.) 

But what I wanted to make it clear is that really, regularity and normality are very close to

each other. That is why whenever we are discussing one of them we end up discussing the

other one. They are so close by. The results we have proved today is an evidence for this.

First we proved that a compact Hausdorff space is regular and then we prove it is normal. So,

compact Hausdorff is normal. Once you prove normal of course, it is regular also because it

is already Hausdorff. But to prove normality we went through regularity. So, that is the point

I wanted to make here, that is all. 

So, we will stop here today. Next time, we will bring another new concept,  namely local

compactness. Thank you.


