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Hello. Welcome to NPTEL, NOC an Introductory Course on Points Set Topology Part II.

Today, we have Module 59, a new topic, classification of 1-dimensional manifolds. 

In every classification problem, we must first of all have plenty of examples of whatever we

are  looking  for,  a  complete  likely  representations  of  various  objects  which  we  want  to

classify. Suppose, you want to classify a certain number of trees. So, first of all you should

have a number of trees, various number of trees and then you can say these are of this type,

that is of this type and so on, that is the kind of thing you have to do. 

So, which are likely to represent all possible types we do not know yet. So, we think or feel

that our list may be just exhaustive, exhaustive of all types. Only after that, we can make a

probable list of representatives which are mutually of different type. The final step is to draw

a conclusion, is to what, is to show that every object that we wanted to classify belongs to

precisely one of  the types mentioned in the list.  While  doing that  often what happens is

somebody else or you yourself will find out another new object whose type was not listed in

your list at all.  



So, you have to add that one to the list that is all. This way classification keeps going on.

When we  were  children,  biological  classification  of  species  was  not  yet  over.  By  now,

several years now, people say it is over now. So, it is like that. Long, long back, Mendeleev

started classifying elements. So, he predicted that this is what all the elements will be. So,

some elements were not even known to exist. But he predicted them and later they were

found. So, it is likely that classification, any scientific classification involves these two steps,

fundamental steps here. 

(Refer Slide Time: 03:11)

In order to classify all manifolds, clearly, it suffices to consider only connected ones. For any

manifold is locally connected, because they are locally Euclidean. And hence, its connected

components are both open as well as closed. Therefore, every manifold can be written as a

disjoint union of its connected components, even as a topological space. you see when you



have disjoint union of topological spaces that is not the same thing as taking a topological

space and writing it as a disjoint union of some closed sets. It it written as a disjoint union of

open sets, then it will be disjoint union as a topological space also. 

So, all this justification is to say that you can only look at connected manifolds. So, right now

we are looking at 1-dimensional manifolds. 

So, what are the examples of connected 1-dimensional manifolds that you have come across

so far? Can you think of more of them? So, this is the first step you have to do. 

So, first of all we look at subspaces of   itself. Observe that any two closed intervals, are

homeomorphic to each other other than a being a singleton space. If it is single points single,

single points themselves are homeomorphic to each other but they are not 1-manifolds, no

problem. 

So, via affine linear maps, this homeomorphism can then be used to get homeomorphism

between any two bounded open intervals as well, or between any two bounded half open

intervals. So, suppose  to , I have got a homeomorphism. then I can delete   from

 and its image from , which is either  or . I will get a homemorphism from open

 close to some half open interval. That is what we have done. And so on.

So, we have we know that all  open intervals are homeomorphic to each other,  half  open

intervals  themselves  will  homeomorphic  to  each  other  closed  intervals  are  themselves

homeomorphic  to  each  other.  Further,  if  you  look  at   going  to  ,  (or  some  such

homeomorphism),  this defines a homeomorphism of open interval  to the whole

of . And if you restrict it to , it will give you a homeomorphism onto the closed ray

. So, unbounded intervals are also taken care under these three types. intervals, half

open intervals, half closed intervals and so on. 

So, as far as subsets of  are considered, we do not have too many connected 1-dimensional

manifolds, what are they? open intervals, half open intervals or closed intervals. So, there are

only three classes. when I say in the list, whatever I mentioned here, they are themselves not

homeomorphic to each other. So, if you look at half closed intervals,   and  , then

there is no need to take both of them in the list, they are already homeomorphic to each other.
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As soon as we go to subspaces of , we get some other types of connected 1-manifolds. It

seems like circles, ellipses, parabolas, circles are definitely not there inside  and ellipses is

not  there,  parabolas  are  different.  There  are  many  more  possibilities.  Actually  there  are

objects what are called a smooth curves. you can talk about smooth and non smooth this is

something completely different game altogether. But simultaneously you can study both of

them also.

Look at  boundaries  of  convex  polygons,  like  a  triangle  or  a  square  or  a  rectangle  or  a

pentagon. They are also 1-manifolds. 

If we can choose a bijective parameterization of any of these curves, that would mean that the

curve is homeomorphic to one of the intervals. (First of all, for any smooth curve, each point

in it has neighbourhood homeomorphic to an open interval, that is why they are manifolds.)

This is the case with a parabola, a parabola can be parameterized completely in a one to one

fashion. What is that? In the standard form a parabola is given by the equation .  That

means it is the graph of that function itself. So  is the parameterization. But if you

look at the hyperbola, hyperbola is not connected. So, you have take only one lap of of the

hyperbola then again you can parameterize it, so even if you go to , accept the circles and

ellipses,  you do not get  new objects.  However,  all  circles  and ellipses,  boundary  of  any

convex polygon etc, are homeomorphic to each other. This is not hard to see. Any two circles

themselves are homeomorphic to each other, you try at least this one, write down a formula

for a homeomorphism from a triangle to a circle.
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So, do we get any other types of 1-dimensional manifolds if we go to 4 and so on into

other higher dimensional Euclidean spaces? You have to probe. Why I am going inside only

Euclidean spaces? because one of our earlier theorems says any manifold is a closed subset of

some . Therefore, when are hunting for 1-dimensional manifolds you do not have to

worry beyond . All 1-dimensional manifolds have copies of them inside . 

But in , there may be a weird kind of embeddings of the circle. Do not worry. The very fact

that  they are  embeddings of  a  circle,  means they  are  only homeomorphic  to  a  circle.  

embeddings can be very funny but they are homeomorphic to a circle, we are not bothered

about weird embeddings of circles at this moment. 



So, are there any other 1-dimensional manifolds? The answer is no. So, that is the gist of

whatever is going to come now, maybe today and one more day, tomorrow. So, two more

lectures we may have to take. So,  this is the theorem, final theorem:

Let   be any connected 1-dimensional manifold, we just means remember it is Hausdorff

and II-countable abstract. 

So, topological manifold I have put smooth in the bracket because the statement is true for

smooth case also, correspondingly instead of homeomorphism you will have diffeomorphism

The final conclusions are the surprisingly they are the same here. But for our purposes we

will ignore the smooth path and diffeomorphism path we will be only proving the topological

aspect. 

So, what  are  the statement  take a  connected to  1-dimensional  manifolds  with or  without

boundaries specifically I mentioned the boundary case also here then  is homeomorphic to

one of the following . What are they open interval, half open interval, closed interval

or the circle look at this case. 

The first one and the last one are manifolds that means manifolds without boundary the ii one

and iii one are manifolds with boundary they are all connected of course otherwise I would

not list them here this and this one these are non compact, these two are compact. So, if you

want only compact on only these to will get, if you want non-compact ones only these two

you will get so do not put compactness you have all the four of them. 

Now, first thing what I will do is granting that we know the classification for manifolds

without boundary, I will  complete the proof of classification for all  of them. That means

when you allow boundary you will have exactly two more members in the list. that is what I

will  show you today,  granting  the  classification  theorem for  the  case  when boundary  is

empty. 
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So,  start with , a connected manifold with boundary of  non empty. We then know that

interior of , being a connected boundaryless manifold,  must be either the open interval or

the whole circle. But I have assumed that boundary of  is non empty, so,  cannot be a

circle  because  if  it  is,  then   is  both  open  and  closed  in   which  means   is

disconnected.  it is already closed. 

So, interior of  must be homeomorphic to an open interval. The question is now, how many

boundary points can be there? you put here. I want to say that you can put a boundary point

around the two endpoint of this interval, at one of them or both of them and that is it. You put

only one of them you will get a carbon copy of a half closed interval, if you put both of them

you get a closed interval. So, these are only two distinct cases that is what we have to prove. 



In other words, through a homeomorphism, having assumed that   is actually the open

interval , I want to show that boundary of  can have at most two points.  

By the very definition, if  is a point in the boundary, then there is a homeomorphism  from

 to , an open subset in , such that . This  is nothing but the inverse of a

local chart at the point . 

Now look at , the image of the open interval which is contained in .

Being a connected open subset of , it must be equal to  for some .

Now the point  is in the closure of  and not a point of , the closure is being

taken in . 

Suppose now that   and  .  It  follows that  we have a pair of points   or

 which violate  Hausdorffness.  Every neighbourhood of   will  intersect  either

every neighbourhood of  or every neighbourhood of .  

 So, it follows that either  or  or both. In any case, this implies  is equal to

 for  or  for some , with  being identified with  or  accordingly. Since

this is true for every point  of the boundary, it follows that boundary of  has at most two

points, if it has one point then  is a half closed interval and if it has two points then  is a

closed interval.  
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Of course  may be equal to . Then the case is over there is no more to bother about this

is allowed then we are done. So, consider the case when   is non empty, there is

some more point let   be another boundary point of  . Arguing exactly as before, it now

implies that  has to be equal to  now, because it cannot be equal to again another  then the

 this  will be violating the Hausdorffness, it cannot be in the other end. 

Student: Sir, I had a question here. So, we had a homeomorphism from open interval 

to the interior of . So the topology on the interior of  was that of open interval . Now

when you took a boundary point when we saw that it can be  and so the first line says of

course as  can be equal to close intervals   so we have only know that   is the boundary

point in the topology on this  is also the same which comes from the source. 

Professor: It has been.. That is precisely what we are doing here now. We are not assuming

the rest of the real number system anything to do with . This  is a copy of the open

interval   which  is  homeomorphic  to  interior  of  .  It  is  some  space  but  by  our

assumption it is homeomorphic to an open interval, this is what we started with. Using the

homeomorphism, I have identified  with  a carbon copy of open interval. So, there

is the order topology  now. (But  itself has no order). That order is being used here.

So, suppose now the subspace  is something  contained in . After removing

 from , the image of  . See, see there is a map  from  to  . You do not know

where this  is going this  is going where? It is going to  and  is not a point of the interior.

It is in the boundary of  and is a closure point of . 



If  is as above, there will be a problem with Hausdorffness. You may want to argue

that there is  a sequence of points in   converging to  , (I do not  want to argue with

convergence etc here though)  which is definitely a point not in the larger interval , then

you have a problem. That is what you are seeing. 

See this is similar to our earlier problem wherein compactification of an open interval 

was considered. Can you have one point compactification, two point compactification, three

point compactification and so on. 

The  one  point  compactification  of  ,  the  open  interval  is  the  circle.  The  two  point

compactification is the closed interval  . Can you have a  -point compactification four

point  compactification,  etc.?  So,  this was a  question I  think we had left  it  to  you as  an

exercise.  Maybe by now you have solved it.  I  will  tell  you the answer now, what is  the

answer? 

If you do not put the Hausdorffness condition on the compactification then it is possible. If

you put the Hausdorffness, the same argument as here or you can do it separately without

bringing in manifolds at all now, just Hausdorffness, you cannot put a third point at all. Over.

Remember a compactification means what? The original space , must be dense inside the

larger space . Just use that property and that  is Hausdorff. You cannot have three extra

points. One point is fine two points are fine. So, that is the answer. Just use Hausdorffness, so

that is what I have done here. But here I have used even stronger property namely  is a 1-

manifold.  So it  is  easier  here  namely that  the  whole  space  I  am not  assuming that  is  a

compactification I am just assuming it is a 1-dimensional manifold with boundary, since it is

a boundary, I already have that namely interior of  closure is the whole of . All the time I

am using is that X may not be compact. 
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So, what we have done is we have reduced the proof of the original theorem to the case when

boundary of  is empty. That means it is a manifold in our original definition with which we

shall proceed now. So, let me do a little bit of it. 

Starting with a countable open cover  for  consisting of charts, we need to understand how

any two members   of   intersect each other. Then only you will be able to assemble

these various open intervals and produce a new object. How they look like. Of course, they

may not intersect each other, that is well and good, no problem. The moment none of them

intersects any other each then   will disconnected. So, some of them have to intersect in

some way or the other. because whole space  is connected. 

So first take just two of them at a time, do not jump to the whole thing yet. We know already

that each of them is homeomorphic to open interval and you want to see how they intersect.

Note that they are not subspaces of   now. You see if both are contained in another open

interval in , there is nothing to prove. 

Each copy is hanging somewhere.  I do not want to use the fact  that they are all in some

Euclidean space  or  etc. We could use that they are inside , because we have another

theorem that the whole  is inside . So, if you want you can draw pictures, no problem.

Beyond that you cannot do anything. So, what we have to understand first is how two open

subsets  ,  two  coordinate  neighborhoods,  (namely,  they  are  homeomorphic  to  open

intervals)  how they intersect in the topological space .  

How they intersect? Nobody has told you. So, you have to understand all possible ways, they

may intersect. That is precisely the meaning of classification here. So, what we will do is



assuming that they intersect, we should first take two cases which we wish to happen and

examine what best we can do in those two cases, nice cases. That is to begin with. 

But then finally, we should say that no bad cases occur, that is the whole idea. So today we

see the nice cases and then later on we shall do the other cases. 

(Refer Slide Time: 32:03)

So, start with a 1-dimensional manifold , let  be any two non empty open subsets in

 neither of them contained in the other. This is an obvious thing that if one is contained in

other there is nothing to bother. You can take the bigger one and you can go ahead to the

third one. So, do not get into that kind of cases. Take the case wherein  and  are both

proper subsets of their union, not containing one another, and they intersect. Choose open

interval  and homomorphisms from  onto . Suppose further that 

(i) intersection is non empty and connected. (This connectedness is the biggest hypothesis,

here. Nonemptyness is anyway has to be there.)

(ii) Now look at . It is some open interval. Why? Because  of an open set is

open (and since   is  a homeomorphism), and connected.  A connected open subset  of an

interval is again an interval say,  . It is not the whole of  . Why? Because that

would mean  is contained inside  is contained inside , that should not happen. So,

this is a proper open interval of . Similarly, , is a proper open interval of

. So, what I have done, I have actually assumed that the first one is  . So, the

other end is fully taken,  . Similarly, the second one is assumed to be . What



does that mean? I have taken this end already, the other end  must be strictly bigger than

. 

So, that is what I have written:  and . So, the second assumption is

very much stronger. I do not know why it should happen, but I would like this to happen.

(iii) The third condition is not very strong  from  to , (  takes

into , it comes back to  via  ) this must be order preserving. Look at this

one. Working inside , I do not have any order. Therefore, I take two homeomorphisms here,

take  the intersection,  from an  interval  go to  the intersection  and come back again to  an

interval. So, this way I am getting a homeomorphism from an interval to interval here. I can

talk about whether it is order preserving or order reversing. This is very important, but it can

be either of them and both cases  can be handled. So, I am assuming it is order preserving, so

that the conclusion is very nice, namely, the union   is homeomorphic to an  open

interval.

So, what has happened is you have an open drawn like this and another like this. So, what

you assume there is they are intersecting like this the union will be again an opened interval.

So, this portion is there fully this portion is there, it is not something like this open interval

that open interval intersecting like that it is not of that nature. Let us go ahead, see whether

we can do something. So, we want to prove this union is homeomorphic to an interval.
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Very easy proof, pick up any point  , between  and . Let   be the unique point inside

 such that . Remember  is the intersection of  and  and

is also equal to .  

So, if I take a point here, , it will be in the intersection, and so, it is  of some point

where that point must be between  and . That is all I have done, nothing very special. You

pick up one point and choose the other point appropriately,  i.e., so that  .

Now you take this number . 

 Now I am going to define a map phi on the interval   as follows: On the interal,

, what I have, I have  but I do not want to take v on the whole of this interval. I will

take  up to . After that I use the . I can use  but I have to shift the



origin because at , these two formulas should agree. When you put , the parameter for

 should become .  

So, if  you take  ,  for   what  happens?   and   cancels  out  and  

becomes . So they coincide. So, this map is well defined this function  is well defined. On

each part it is continuous. So,   is a continuous function from this interval   taking

values inside  does not go outside that. 

Also, all the points of  are taken care of. If they are inside , then  takes care of up

to  .  Beyond  ,   covers  the  rest  of  the  points  and hence   is  surjective  onto

, because of condition (iii). What is it? (iii) says this  is order preserving. 

(Added by the reviewer:  is clearly equal to . But 

is equal to  and similarly  is equal to , because of  is

order  preserving.  Therefore   is  equal  to   which  is  in  turn

equal to the image of .) 

This  function   becomes  injective  for  the  same  reason.   are  injective  and  the  images

 and  have only one point in common viz., .

So phi is a continuous bijection.    

Now look at . Observe that on , we have  is equal to . On ,

 is not precisely  because there is a shift factor in the parameter, viz,  is added.

Therefore, when you take the inverse, you have to add , after taking , you translate

this one, then what you get the inverse of this map . So, both of them are continuous and

they agree at the point . Therefore, the entire  is continuous.

 So, this proves that the union is homeomorphic to an interval. That was the statement here. 

Next time we shall do another thing, but we will wait for that. Another wishful thinking is

fulfilled.  And after that we will go to the proof of the full classification. Thank you.


