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Welcome to module 57 of NPTEL NOC an introductory course on Point Set Topology Part II.

Continuing with the study of manifolds, today we will take the topic homogeneity. You might

have come across the word homogeneous in different contexts like group action on a set and or

on a topological space and so on. So, here is something that I understand a topological space is

called homogeneous space, if there is a group acting on it and the action is transitive. 

So, transitive means what? There is one single orbit.  Given any two points there is a group

element  , which will map this point to that point,  . That is the kind of thing. In this

section we shall be interested in transitivity of the action on , what is the group? the group is

the largest group you can think of namely, the group of all self-homeomorphisms of the space .

In  a  topological  space,  when you take  group actions,  you  would like to  take  them through

homeomorphisms namely, each multiplication by an element of   must be a homeomorphism

(just continuous is enough,  automatically it will be a homeomorphism of course). So, the best

thing is to take the space of all homeomorphisms. Under the composition of functions, it will



form a group.  So,  you can  look at  that  group acting on the space  .  Is  it  transitive  is  the

question. The answer is, yes in the case of connected manifolds. 

(Refer Slide Time: 02:31)

So, let us see how good it is. The transitivity has many other ramifications here. So, we begin

with the simplest object namely an open disk. Our model for manifolds. Take any two distinct

points  and  in the interior of , I have also denoted it by , the open ball of radius .  

Then there exists a homeomorphism  from  to  such that  equal to  and  equal to

 for all  on the boundary of . On the boundaries it is identity and  is mapped to . 

You might have heard such things in complex analysis. There you have such functions which are

even complex differentiable.  Here we are doing it for   for any  , and we do not have the

strong structure of complex analysis on .  
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So, the proof is quite straightforward, namely, use is the convexity of . For any  inside , let

us write  from  to this ,  is an interior point. You throw away that. So,

take this function  of a vector  ,   is a vector inside , a unit vector, take   going to

. Note that this  is a homeomorphism. Verify. Look at this RHS, when  it is

, which is anyway not in the codomain, I that I have thrown away , Also  is not there in

the domain either, after all. But when  this is . 

So, RHS is gives you the formula for the line segment joining  and , the open line segment, the

point  itself is not there. You can actually write down the inverse map. Every point in 

has  a  unique  expression  like  this.  That  follows  from  the  convexity  of  .  So,  this  phi  is

homeomorphism. 

Also note that when   tends to  , this   tends to  , for all  . So, I can extend  

continuously to the whole of   the closed interval  by sending   to  .  But of

course, the extended  will not be a homeomorphism. Because all the points  have gone to

the single point  here. 

So,  now take   (depends  upon two distinct  points  in  ,  any two arbitrary  points  in  the

interior), from  to   to be  . From here you come here and then come

back here. So, automatically if you take  tending to  in the domain, then  will tend to .



So, I  can  extend this   continuously to a  map   to  ,  by sending   to  ,  that  will  be a

continuous extension. 

Exactly same way we can define   also, namely by taking  , it  will have the

property that  will be mapped to . Indeed, this  will be actually the inverse of . Since

we  have  verified  that  these  two  are,  the  continuous  functions  it  will  follow  that   is  a

homeomorphism. 

Clearly on the boundary of  is mapped to the boundary. Actually  is the identity map on

the boundary.  

So you know how to construct a homeomorphism like this. 
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So, here is  a picture how it is done. Each line segment like this will  be mapped onto a line

segment like that. The points on the boundary, they are kept fixed. This is . 

So, this is the homogeneity of the disk, namely, any point in the interior goes to any other point

in the interior by a homeomorphism of the entire disk which is identity on the boundary, that is

an extra property.  In particular, we have a homeomorphism of the open disk to itself also doing

the  same  job.  So,  that  extra  property  is  going  to  help  us  very  much  now.  Namely,  the

homeomorphism is identity on the boundary. 
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So next lemma is to take any manifold   and a path omega from  to  . (Recall that any

continuous function defined on a closed interval is called a path. That is all.) Take  to be the

image of that path and  be an open subset which contains . Then there exists a path connected

open set to   in   such that   is compact and   is  contained inside   contained inside  

contained inside . 

So, do not worry much about path connectivity. This is just regularity, because   is compact

being the image of a close interval under continuous function, and  is open. So, you would get

this  by regularity. But how do you get this  as path connected? there you have to use that  is

path connected. And what more? That  is a manifold (not just a regular space).  is a manifold

means it is locally path connected. 
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So, let us see the proof. For each point  choose a coordinate neighbourhood  of  such

that   contained inside   contained inside  . By the compactness of   it follows that   is

contained inside finitely many ’s. So, call that union . So, this  is union of finitely many

coordinate neighbourhoods.  Coordinate neighbourhoods are homoeomorphic to open discs or

open the whole of  whatever you mat say. 

Therefore, all of them are path connected. Why is the union is path connected?  You can rewrite

 as a finite union of , where  for each . Then each  is path connected and

they all have  as a subset which is path connected. So their union is path connected.
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Let   be a connected open subset of   and   and   belongs to  . Then there exists an open

subset  such that  is inside  inside  such that  is compact and a homeomorphism f from

 to , such that under ,  goes to  and  is identity outside of . 

Now, in this now, so many things are combined together. Two points are taken in the manifold,

inside a connected open subset. They will be mapped one to the other by a homeomorphism

which is identity outside a smaller open subset. And this smaller open subset of course contains

both  and you can assume that it is relatively compact. 

More  generally,  such  homeomorphism  are  called  homeomorphism  with  compact  support.

Support means what here? Closure of the set of all points wherein  is not equal to . So, this

is the proposition, it is not very difficult now, because we have made the two important lemmas

here which are actually what we can say, preparatory results.
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So, this is also a preparatory result you may say, but it builts upon the two earlier ones. 

So,  Start  with  a  connected  open  subset   of   where   is  a  manifold.   is  locally  path

connected therefore,  is path connected. So, start with a path joining  and  inside . Then cut

down this path into finitely many portions by taking a partition  such

that each segment  is contained in an open subset  such that  is homoeomorphic

to  .  To  begin with you have  such coordinate  neighbourhoods covering   which is

compact and so there will be finitely many of them just like, you can make it into a partition like

this, such that each segment is contained in one of them. This  are homoeomorphic to  and

all of them happening inside is open subset  . You are not going outside the connected open

subset   here.  From the previous  lemma for  each  ,  we get a  homeomorphism

 from   to  ,  which  maps   to  ,  where  .  Because  these  's  are

homoeomorphic to . You can take a homeomorphism  from  to , get the corresponding

hoemeomorphism from   to   and come back via  . So you get these   which is

identity on the boundary of . Extend each of them identically outside  to a homeomorphism

from  to . 

After  that,  take   equal  to  union  of  these  ’s  and   equal  to  the  composition

 in the reverse order.

So, this will map  (first to , the second one to  and so on the last one) to . Since 

and , we are done.  
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Here is an example. For , the translations can be used to take any point to any other point. If

you have two distinct vectors  , the translation by   will take   to  . That is  all.  But

translation do not have compact support. They will translate everything or they will not translate

anything, that is identity. In the above result  we get homeomorphism with compact supports

doing the same job. 

There is no extra assumption of course, it is true for   also, for any connected manifold you

have this proof. In case of  , one can directly write down a piecewise affine homeomorphism

with compact support as follows. 

So, I want to do this one for , by hand, not by using any theorem and that will be very useful

and instructive. 
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We know that for any two pair of distinct points   and   in  , there is a unique

affine homeomorphism taking  to  and  to . This we have used already in the proof of a

theorem earlier. So I index this map by . It is given by a formula here.  So, you see, all

that you have to do is to send  to  the entire thing divided by .

It is a polynomial map. 

You know this. There are much more or stronger statements viz., by interpolation formula of

Lagrange etc., there are polynomial maps and so on. This is just an elementary verification here

that this the linear map does the job. (Refer Slide Time: 20:03)



Now given two arbitrary  in , choose  such that  and  are inside . And define 

from  to , instead of one single affine linear parameterization what I am going to do, I will

break   into four parts  and take different  maps on each of them. Because I  want   to have

compact support and affine linear maps do not have compact support. So first cut off all   for

each  or  is greater that or equal to . Take  to be identity there. Now let me see what I

am going take   from  to  . Already I am forced to take  and . I also

want  going to . Look at the probable graph of . 

Beyond this , it is the graph of the identity map and hence part of the main diagonal in .
Here over , I have the point  which must lie on the graph. So, the easiest this is to join



the points  to  and  to  by line segments. That gives you the formula for the
entire map .  
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So, if you want to improve upon this result we may run into difficulty in this -dimensional case.
Improve upon this one means instead of asking one point to be mapped onto another, suppose
you have two -point sets, can you map a homeomorphism mapping one set to another? If  is a
homeomorphism such that  and , then  is strictly decreasing function and
hence f cannot have compact support

All  that  I  am using  is  the  fact  that  a  homeomorphism of   to   has  to  be  monotonically
increasing or decreasing. Therefore, if you start with two sets having more than one point each,
you will have to take them in a particular order. You cannot just shuffle them,  cannot be
mapped onto to   unless either   are strictly increasing and the other one is strictly
decreasing or increasing both of them is possible. But it has to be in a particular order. 

If it is increasing here and decreasing there you will have to take some monotonically decreasing

homeomorphism, otherwise you will have to take monotonically increasing function that is all.

Of course in the former case, you will not get compact support. So, the moment you have to deal

with sets with more than one points, there are further restrictions imposed. 

(Refer Slide Time: 24:25)



So, whatever it  is, this kind of patching up of affine linear maps of this nature as discussed

above, has to be employed. So, this can technique can be used to obtain a lot of things. So let me

have a result here, which we will use later on, in the classification of -manifolds. 

So start with these six numbers, arrange them in the increasing order. I have denoted them by

, and  . You can use any other notation   as well but right now

stick to this notation.

Suppose, you have a homeomorphisms  from  onto  from  onto  where  and 

are some subsets of some space , (one is contained inside the other is the only condition and



both of them are homoeomorphic intervals one is parameterized by this , another parameterized

by  and there is no relation between  and  etc.) 

Now what is the conclusion? There exists a homeomorphism from  from  onto , such that

restricted to , it is .

Start with this  it is covering only  which is a subspace of . Now, the new map  from 

will cover the whole of  and is an extension of . That is the important point to note. 
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So, let us see how it is done, not very difficult at all. Take  equal to  and  equal

to . Notice  is a smaller open subsets smaller than . On that I do

not want to change this   at all. In any case they are inside   and so   those points makes

sense, and will be between  and . Depending upon whether  is orientation preserving or

reversing, we have two cases, namely,   is less than  or  is less than , I have no control

over that.

But in either case, they are in the interval . I have taken first  and then taken . So, they

are in the domain of  viz., the open interval . So, there are two cases. Accordingly I will

define two different homeomorphism . 

So, first let us define a homeomorphism  from  to . Let us do the work inside  first

and then go to these arbitrary space .   

So, this is situation is what we are familiar with,  from  to  by cutting the domain and

codomain in into three parts; The first part is  to , the affine linear homeomorphism.

The second part  is   to   and the map is   and finally from   to  

another affine linear homeomorphism. 

So, this map is between   to   the second one is just   wherein I do not want to

change my  namely on . So, it is between , it is . The third one is again

this is cutting off things we have to use  to  and  to , so endpoint is going matching

here, here endpoints matching on this side, this part was the in between things. So, that will

happen  less than about  less than . So, they agree because of the definitions of these things.

So,  is a homeomorphism, this  is from here to here. So, homeomorphism. Now, all that I do is.
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Since on the common endpoints the two definitions agree, so the map  is well defined and is a

homeomorphism.  Now, all  that  I  do is  to  take   to  be  .  On this  middle interval,  what

happens  and  and it . So,  is  on this interval. 

So, there is another case here. What you have to do is to change the definitions on the frt and the

third intervals, because we need them to be monotonically decreasing. 

So, in the middle interval, you have to take it to be  only. So, in the first part take the

affine linear homeomorhism from  to  which is orientation reversing i.e., decreasing.

And in the third part, again take the affine linear homeomorphism from  to  which is



again orientation reversing. You map  to  and  to  here. Similarly, here  should be mapped

to  and  to . So, change the order that is all. 

So,  we  will  continue  the  study  of  homogeneity  next  time.  We  will  do  something  really

marvellous next time for general manifolds. Using these ideas from real numbers. Thank you.


