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Hello  welcome  to  NPTEL  NOC Point  Set  Topology  Part  II.  Today  we  will  start  studying

manifolds with boundary. Last time we studied what are called manifolds. So, this manifold with

boundary they are also going to be manifolds in some sense. Actually we are going to extend the

definition of manifolds to a larger class of topological spaces. 

So, I will touch upon the usage of this terminology a little later. The first thing is that we are

already  familiar  with  the  word  `boundary'  in  a  different  context.  Namely  we  used  it  this

whenever we have a topological space and a subset of that. Then the boundary of the subset  is

defined as the closure of  setminus the interior of . 

This  nomenclature  for  the  boundary  is  totally  dependent  on  the  larger  topological  space  

wherein the subset  is sitting. Now, the term boundary will be used in a much subtle way in a

technical sense. And it is going to be an invariant of the homeomorphism type of the topological

space , and it does not depend upon where the manifold  is sitting inside. 

(Refer Slide Time: 02:20)



So, having said that much, let us come to the brass-tacks here. The important thing here is even

to make this definition we need the full force of Brouwer’s invariance of domain. 
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Namely, hope you remember this one, not the weaker form but the stronger for namely, if you

have two non empty subsets of , which are abstractly as topological spaces under the subspace

topology from , are homoeomorphic to each other. If one of them is open in  then the other

one is also open in . This is a completely a non trivial statement, a powerful statement and this

is what we will need. 

We have used only the weaker version earlier namely,  and  cannot be homoeomorphic if

. That is an easy consequence of this stronger version. So, now, we will need the full force

of this. I will come to that again why we need it.
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So, first of all  our model for manifolds itself will change now. Earlier the model was   or

equivalently all open discs inside  . Anyway all of them are homoeomorphic to each other.

Now, we are taking the half space  namely the subspace of  consisting of all points such

that  the  last  coordinate  of  the  points  is  bigger  than  or  equal  to  .  You can  take  any  other

coordinate also, to get homeomorphic copies. But this one is most convenient one.

So, this is like the ray, when . Closed right ray . So, we are allowing the boundary

point  here the boundary in the older sense namely this point  will be a boundary point of

 inside the larger space . That is the starting point that is our model now. 

So, in  for example, all points with their last coordinate equal to , that is a subspace of 

and is the boundary of this  inside . But once we have taken this , you can just forget

about  and use this model  to define our manifolds. So, let us see how. 

Let us start with a topological space . We will call it a manifold with boundary, 

(so, now I am not defining a manifold, I am not defining boundary, I am not defining these two

words separately here. But I am defining the phrase `manifold with boundary' this entire phrase

as a single technical phrase) if  is a II-countable, Hausdorff space and is locally Euclidean in

the following modified sense: 

For each point , we have a neighbourhood  of , and a homeomorphism  from 

to an open subset of . 



Of course, the entire  is also allowed no problem, as an open subset of . Notice that the

open set consisting of all point with the nth coordinate strictly positive is homeomorphic to 

itself. Therefore, all open subsets of  also have copies inside . 

In this sense, this modified definition of local Euclidean is more general and allows us little more

freedom. 

Terms such as charts, coordinate functions, coordinate neighbourhood, atlas etc., which we have

defined in the definition 12.1 in the context of manifolds, they all make sense exactly similarly

also except  that   may not necessarily  homeomrphic to an open subset  in  ,  but  it  is

actually an open subset of . There is something funny here. In fact, every open subset of 

has a copy which is an open subset inside  as observed before,  itself is homoeomorphic to

the strict open upper half space here, namely take all points such that last coordinate is strictly

bigger than . So, if you have an open subset of  strictly contained inside the interior of 

in  , that is open in   and vice versa any open subset of   is homeomorphic to an open

subset of interior of .  

So, this half space has more open sets than the full space. 

Anyway so, we can have these extra opens sub set here of , which meet the boundary of 

in  namely the linear subspace . Those are the extra open subsets. Therefore, this

definition is clearly a generalization of the old definition of a manifold. 
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Let us denote by interior of  , the set of all points of   having a neighbourhood  which is

homoeomorphic to an open subset of interior of  itself. You see there are types of points. The

first type is our interior of  , consisting of those points for which there is such a coordinate

neighbourhood  with  is bigger than .

So,  take  such  points.  They  will  form  automatically  an  -manifold,  namely  topological  -

manifold in the old sense. So, why the interior is non empty as soon as  is non empty? That is

also  clear  because  as  soon as   is  non empty,  there  is  some open  neighbourhood which  is

homoeomorphic to a non-empty open subset of . If you delete the boundary part here that will

be an open subset in the interior of , which is obviously non empty and so you can take the

inverse image of that. So, the same statement you have to see inside  first, Then you get it for

.  

The complement of interior of  in  is denoted by boundary of . So, this is just a notation

now, I will read it as boundary of  and call it the boundary of . So, we have used this notation

earlier for boundary of  where  is a subset of . If  the entire topological space, then

boundary of  is empty. 

So, this has no other meaning there. Because the closure is whole of  and interior is also the

whole of . So, boundary of the whole space inside itself is empty. 

So, here that is not the case.  is a topological space on its own, it is not contained in anything.

This is a topological space on its own. Now boundary of  consists of those points which are not



in the interior of . So, interior of  also has a different meaning here. In the general topological

case, interior of  inside  would be whole of . That may not be the case here. Here also it

can happen. But then   will be a pure manifold in the old sense as well. and its boundary is

empty.  

(Refer Slide Time: 11:31)

So, I am talking about a special case. It may happen that boundary of  is empty. That means 

is a manifold in the old sense. Actually, this is `if and only if'. 

The points of boundary of  are characterized by the following property. (So, this is where you

have to use the Brouwer’s invariance of domain.) Namely, there is a neighbourhood  of  in 

and a homeomorphism  from  onto to the entire , equivalently, on to an open subset  of

 such that the  coordinate of  vanishes.  

(So, in particular the subspace  should be hit by this .) 

So take all possible local charts  for , and take the union of , those are the

boundary points of .  

Now, what do you mean by `characterize'? Let me tell you that. So, this is where I have to use

Brouwer’s invariance of domain. 
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So, let  us  start  at  such a point.  If  possible,  suppose there is  another  neighbourhood   and

another homeomorphism  from  onto an open subset  of  such that the  coordinate of

 is positive (either it is positive or it is , its greater than or equal to  always). 

Question is can this happen? The moment one this thing happens, this other thing cannot happen

that is the conclusion we are aiming at. That is why this is a characterization. 

So, let us see why this cannot happen. Once you have another  like this, you can restrict your 

to a smaller neighbourhood  of , viz., the inverse image  which is

contained in .    

This will imply that  from  to  is a homeomorphism of  onto an open subset  of the

interior of . Any open subset of interior of  is open inside  also, because interior of 

is open in . 

Now,  consider   from  this  open  subset   to  .  Being  a  composite  of  two

homeomorphisms this  is a homeomorphism of  onto a subset say  of  which contains

the point   which has its   coordinate  . By Brouwer's invariance of domain   must be

open in  itself. So, that is absurd, because no open ball around  will be contained in 

which is a subset of  , because such an open ball will have points with their   coordinate

negative. So, the conclusion is that the definition of boundary of   as well as interior of   is

now well defined thanks to Brouwer’s invariance of domain. 
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It follows that  which is just a notation for , (this may be empty in general,

but right now, I am assuming that , and hence  in there in ) will be a neighbourhood

of , and restricted ,  itself is homeomorphic to . 

So I  am taking   to  be inverse  image of   and first  thing you note is  that   is

contained in boundary of  , because all these points in  are coming here in  . So

they are all qualified to be inside boundary of . So what I am talking? Starting with a 

like this, where  has gone to a point inside , i.e, , take  equal  inverse

image as above, that will be a neighbourhood of  inside boundary of  and homoeomorphic to,

via the same  , to an open subset  of  .  That mean that boundary of   itself is  a

manifold, pure manifold in the older  definition, of dimension one less namely,  of dimension

. This is under the assumption that it is not empty. That is all. Boundary of  being empty

is also allowed. 

And this boundary  itself will not have any boundary. 

An easy consequence of all these observations is that the boundary of a manifold is a topological

invariant. What is the meaning of that? If you have a homeomorphism  from  to , and  is a

manifold with boundary then  will be a manifold with boundary and  of the boundary of 

will be equal to boundary of . Think about it is not difficult at all. (Of course this also implies

that if boundary of  is empty then so is boundary of .) 



So  boundary  always  is  mapped onto  boundary  of   by  the  homeomorphism.  So,  restricted

boundary of , it is again a homeomorphism. 

Now,  I  come to  again  this  nomenclature  about  manifolds  somewhat  apologetically.  Strictly

speaking, our first definition of manifold should have been named `manifold without boundary'

and the second one here should have been named just `manifold' or `manifold with or without

boundary'. 

The only problem is, right from the beginning before defining the manifold, I  have to define

what is the meaning of `with boundary' and `without boundary'. So, one does not like that one.

The second point is  that there is a standard  convention of using the smallest word, smallest

phrase,  to represent the most commonly used concepts. Since we will be studying manifolds and

quite often without boundary, so, those should be just called by the shorter name, so we have

called them manifolds. So that it is all the explanation for why we are making this one. In any

case,  if  there  is  an initial  confusion about this  what is  a  manifold,  what  is  a  manifold with

boundary, and what is a manifold without boundary, having spent sufficiently enough time now

and got explanation, I hope this confusion if it all has disappeared now. 

(Refer Slide Time: 20:28)



Let us have some examples. 

Any closed disc in  is a manifold with boundary. So, we have to prove that one. Since any two

of them are homoeomorphic to each other it suffices to show that the standard unit disk  inside

 is  an  -manifold  with  boundary.  In  fact  boundary  itself  will  be  an   dimensional

manifold, all  such that norm . We will prove that. Let us look at the case  first. Then

this closed disc is nothing but , the interval. 

You can write it as a union of  and . Two  open subsets half closed intervals, each

of them is clearly homoeomorphic to [  and that is . So, I have given an atlas consisting

of two charts. So, I have given atlas over. In the general case what I will do? I will take  

setminus the north pole  and  setminus the bottom point . 

So, this is similar to what I did in the case . We claim that these two open subsets of  are

homoeomorphic to the entire of  just like this one. dimensional version that is all. So, let us

denote by a shorter notation this north by, say by . 

Let us consider one of them, . The other one is homoeomorphic to this one by just

taking the negative of the   coordinate,  viz., reflection in the   coordinate subspace,

perpendicular to . So, it is enough to show that this  is homoeomorphic to . 
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So, we have a ready made map here actually, only thing is we have to see how to use it. So, first

what I do? I will identify this disc  with a subspace of  indeed a subspace of  itself. See

 itself  is  sitting  ,  this   is  inside  .  So,  I  need  1  more  coordinate.  So  take

 mapsto   where the  -coordinate   is, first take  , and

take the square root. Why I have done this? If you take now squares of all these coordinates now,

that will be equal to . So the image point is inside the unit sphere here in . That is all. 

Clearly  this  is  a  continuous  map,  it  is  actually  the  graph  of  this  function   and  hence  a

homeomorphism onto its image viz., the closed upper hemisphere, the subspace of , given by

the condition .  



So, this is the preparation I have made now. Now, what I do I take the stereographic projection.

Stereographic projection is defined from  the north pole in  to the entire of . 

So, that is a homeomorphism we have studied carefully. Restricted to the hemisphere setminus

, it will go into the half space  . This

latter space is clearly homoeomorphic to , the only thing is instead of last coordinate ,

I put . So, you have to interchange those two coordinates. 

So, look at this method. I mean these are important methods in handling various subsets of ,

that is all. 
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So, more generally, any convex polyhedron in   being homoeomorphic to   is a manifold

with boundary. Details are left to you as an exercise, why? I do not want to get into what is the

definition of convex polyhedron on and so on. If you do not know it, you will have to learn it

from somewhere else that is all. That is not central to the theme of this course.
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Note that as a manifold with boundary, the boudary of  coincides with its boundary as a subset

of  .  Indeed  this  explains  why  the  term boundary  is  used  in  general  topology  you  know

classically these manifolds were defined and studied even without definition perhaps even before

the point-set-topology was conceived.  Forget  about the boundary of a  subset  and so on.  So

boundary of subset that concept is copied from examples like this. Unfortunately we are learning

these things other way round. For the same reason as for manifolds without boundary, manifolds

with boundary are also metrizable and hence paracompact, why? 



Because we have assumed that they are all  II-countable Hausdorff and whether they are locally

homeomorphic to open subsets of   or  ,  they will  be locally compact.  So, they are  

spaces. II-countable  spaces are metrizable. 

We shall often use the word manifold to mean manifold without boundary, the old definition. 

So, that is why this shorter term manifold. Often the results that we state for them are valid for

manifolds with boundary as well, though we cannot take all of them for granted there are some

results which are not true at all for them. And if they are true, you have to prove them separately.

Sometimes  it  requires  quite  a  lot  of  effort  as  compared  to  manifolds  without  boundary.

Whenever things are not true at all, we will try to mention them separately.
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So here is an easy consequence of the existence of partition of unity because we have shown that

they are Hausdorff and paracompact. 

We shall now obtain the so called Collar neighbourhood theorem which is a very useful result on

its own. So, that is an important result about manifolds with boundary.

So, let me make a definition first. Let  be a manifold with non empty boundary (otherwise the

rest of the definition is vacuously true or it does not hold at all). So, start with the manifold with

boundary non empty. By a `collar neighbourhood' (or simply you can say a `collar') of boundary

of  inside , we mean an open set  of  with a homeomorphism phi from  to the boundary

of . 

This is a topological product, boundary  is subspace of , you must have a homeomorphism as

above, with one extra property namely for all  in the boundary of ,  should go to .

Clearly  a neighbourhood of boundary of . So, boundary of  is sitting inside here. So, such

an  open  neighbourhood  along  with  a  homeomorphism  as  above  will  be  called  a  collar

neighbourhood of boundary of .  

Now there is nothing special about the choice of this half open interval  , you could have

taken  for any epsilon positive, because we know  is also homoeomorphic  that is

all.  Indeed once   is a collar neighbourhood as above you look at  the subspace namely,

, take the inverse image, that will be another open subset which will contain



boundary  of  ,  and  it  will  be  again  homoeomorphic  to   obviously,  by

composing  with Id cross a homeomorphism from  to .  
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Note that the entire  itself is a collar for boundary of . Obviously,  is a manifold with

boundary equal to . 

Similarly, if you take  setminus a concentric closed ball, viz., the its centre is the origin and

radius   of  course,  if  you  delete  a  concentric  ball,  then  what  you  get  is  a  collar

neighbourhood for boundary of , namely, of the sphere .

 For a closed interval  is a collar neighbourhood of boundary of , (if you choose

 and  ).  What  is  boundary  of  ?  It  is   just  the  two

elements, with the discrete topology. That has a neighbourhood inside , like this 

(which homeomorphic to a product provided they are disjoint and of the same length).  

(Refer Slide Time: 34:36)



So, there is a final example now. Here it is stated as a theorem. So, pay attention.

Let  be a manifold with non-empty boundary and  contained in  be proper open subset in

 such that boundary of  is contained inside . I do not want this  to be the whole of .

Then there exists a collar neighbourhood  of boundary of  such that this  is contained in 

contained inside W, and the complement  is homoeomorphic to  again. 

So, throw away the collar neighbourhood.  Whatever  left out  is  again homoeomorphic to the

manifold itself. The collar is always like boundary cross an interval. So, you remove it, that will

be again homoeomorphic to . That is the meaning of this one here. And such neighbourhood

can be chosen as small  as you please,  viz.,  inside any given open set  .  This   itself is a

neighbourhood of boundary of . Then you can take  such that  inside . 

So, the proof is slightly longer but not difficult if you understand what is going on. The two,

three examples whatever I have given above, they are the guiding principles here. That is all.

Look at what happens in that place of  to say  open.  is the boundary it has a neighbourhood

no matter how small   you take  , which is homomorphic to  . If  you remove  

whatever is left is again a half closed interval and so it will be again homeomorphic to the whole

of . 

Similar to that is what is happening. But we have to work a little harder here, we need to use

partition of unity also. Because we are not assuming compactness. If you assume compactness,



you can probably write down a much shorter proof. Over to you, after you learn this proof that

will be left as an exercise to you. 
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So the idea here is a beautiful one here, what we do is, we attach an external collar to , I am

going to explain what is the meaning of this one. Namely, you know, you are taking a larger

space, you are creating a space containing  . So the rest of the extra space is boundary of  

cross .

So that is what I am going to do. So, I am taking  as the quotient of disjoint union of  and

boundary of , (if you just take disjoint union that is not much fun, what I do?) where

I identify boundary of , this copy of boundary of , with actual boundary of  here, by

identifying   with   for  every  .  The  rest  of  the  points  of  the disjoint  union are

floating  outside  undisturbed.  Observe  that   is  also  a  -manifold  with  its  boundary

homeomorphic to boundary of  this time. So, this portion becomes the boundary now.

All the points , they have become interior points in . 

The idea is to define a homeomorphism   from   to  , which is identity outside some  

properly  chosen  and  then  take   equal  to  .  Clearly  then   will  be

contained inside  and  from here to here is a homeomorphism.
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So, what is this , I will explain. This is a smaller subspace of  chosen right in the beginning

like this. Namely, you can choose an open subset  such that boundary of  is contained inside

 and its closure is contained inside . So, here I am just using regularity and  is a closed

subset. Closed subset contained in open subset, in between you can introduce this another closed

neighbourhood. 

So, now we begin with a countable partition of unity , how did you get countability? Because

the whole space is II-countable. Where I am working, on the boundary of  which is a manifold.

So that for each  , the support of   is compact. So, this is one of the remark which we have

made. Because of the local compactness, you can assume that the support of  are compact, and



is contained in a coordinate open subset . The coordinate subsets can be assumed to be such

that they are relatively compact, their closures are compact.  And then if this support of   is

contained inside  then automatically, the support will be also compact, being a closed subset.

So, how do I do that? Start with an open cover consisting of coordinate neighbourhoods, namely

an atlas. Go to a locally finite subcover, possible because  is paracompact. After that go to a

countable subcover, possible because of II-countability. Use the partition of unity subordinate

this  final  cover,  which  exists  because  of  paracompactness.  Automatically  you  will  get  the

supports to be compact. 

So, these are coordinate neighbourhoods. So we have  from  to , where each  is

open subset of . These are coordinate neighbourhoods for points inside boundary of . Now I

am going inside the manifold  itself, by using the fact that whole thing  is a neighbourhood

of boundary of . 

And  are compact. So I can extend this neighbourhood to ,  from . See you the

first thing here because of the compactness, you can extend it to a small neighbourhood  to  to

 is Weyl’s theorem. Homeomorphism  to some  is there. 

Now,  is there now you can take an open subset in , open subset ’s, these ’s are inside

 of  . Such that the if  ,   coordinate   is   for all  . So, these ’s.  ’s I am

actually writing as a parameterization there you know parameterizations for points inside the

boundary, but the parameterization occurring for neighbourhoods inside  itself. So, you choose

such homeomorphism that is no problem. 

Now comes the  inductive construction.  Now,  put   equal  to  .  So,  starting with not  doing

anything  equal to . For  is the sum of all   for  ranging from  to . Remember,

these  are all non negative real valued functions.

So, you can just sum up finite number of them, that is the definition of these new fuctions  .

Next, put this  equal to the space of all  such that  is inside , (they are open subsets of

) and  varies between  and . After all, these ’s are taking values between  and .

So I take minus of this less than equal to  less than equal to  these is the range for the second

coordinate.  So this is  some interval  strictly contained inside of  .  This part  is   on the



positive side, the negative side how much you can go at the most . So, these are subspaces of

, but may be much smaller.

Now put  equal to the space of all  such that similar to , but use  here instead .

So, since   is slightly bigger that   because one more function has been added here, this

interval will be slightly larger interval than this one but the first coordinate is the same . 
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And now, take  from  to  be the homeomorphism which linearly stretches the segment

 cross this interval to this interval, linearly stretches means what?  goes to   and

goes to . You know, we have a unique linear order preserving homeomorphism mapping



any interval  to . So, take those homomorphisms for each  you do that. Because you

can  write  down  the  formula  for  them  in  terms  of  in  terms   and  ,  it  will  be

automatically a homeomorphism on the whole space . 

So,  put  ,  (I  am  defining  these  things  inductively),  put   equal   union  the  set  of  all

. So, this the portion  taken only up to . These 

are extra spaces you see that is what I have taken union with . 

So, they are all subspaces of  now anyway. Let  from  to  be the embedding given by

 is  , where   is  positive,  sorry non negative. (Remember this   is defined on

), so, when the second coordinate is no negative here, you take  to be ; when  is

between  and , you take  itself.  

So, that makes sense because they are all subspaces of . We are working inside  now. So, it

will go inside .  is well defined, because though it is given by two definitions for , the

two definitions coincide. So, we have got these embedding of  inside . 

Next, we define  on the image of  to  by the formula .

This  is stretching the smaller space to the larger space. 

So, first stretch it  and then take  , every member here is the image of a unique point,  it  is

. So, take that  apply the stretching, and then again take . So it is like first you take

 of the point, to begin with. Instead of writing inverse I have just written it as .

Every element here in the image of , is after all the image of a unique element like this 

If  is not in the support of , i.e. , then  will be , and so the stretching

fact is identity. Therefore,   will be just , therefore,   will be  for

such points. For negative  , anyway   is  . But now we have seen that of this one

 will be just . Because this is identity. 
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So, these stretching are extending the earlier neighbourhoods to the next one. That is important.

Now, we define  from  to  , (see on these subspaces this  , we have defined already,

now on the whole space ) to be  on image of  and identity outside the image of . 

On the boundary of image of   itself   is  identity,  therefore I can extend it  identically on

outside of image of , it will follow that  is continuous. 

Indeed, since each  is a homeomorphism, it easily follows that  is also a homeomorphism.

Finally, there are infinitely many of these 's. I am putting  equal to the composition of these 

’s, in that correct order, the reverse order. So, what is the meaning of this? How do you explain

this infinite composition? Look at any point,   is defined,   is defined,   and so on. After a

certain stage it will become identity Why? Once the point is outside support of  will be just

identity. 

So, we are taking only the composition up till here, stretching, stretching, stretching along the

these intervals, vertical intervals over .  will be fixed and  goes to , that is the kind

of homeomorphism we have. So, this  makes sense because  at each point  only finitely  many

functions  are  not  identity  after  that  all  are  identity.  So,  this  is  like  infinite  product  of  real

numbers, when you take most of them equal to . Similar to that. 

So, note that on complement of  which is the union of all , which is outside ,

 is identity. On  itself,  makes sense. Since for any point  belonging to boundary of , there

are only finitely many  for which  belongs to  because of locally finiteness. And  is



equal to , if  is not in ,  is not in the support of . Indeed in a neighbourhood of , all

 are identity except those  for which  is not . So that is the whole idea. 
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For this reason, the map  is also a proper map, why? Enounh to prove that inverse image of a

compact subset  for each , is compact. Such an inverse image again contained

inside  for some  between  and  is what you have to see. This follows because for

each such , you can find a  such that  are identity outside , for .  



Finally, since summation   for all  , it follows that   will be surjective. Though it is

infinite sum in as such given any , there will be only finite many  such that  is not zero,

therefore if  , there will be some   such that   lies between   and   and hence

 will be hit by .  

So that is why the surjective. 

Since each   is an embedding,   is injective also, therefore,   is a homeomorphism being a

proper injective and surjective map.
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Here is an easy exercise. Show that a manifold with boundary is connected if and only if its

interior  is  connected.  This  is  slightly  tricky  thing.  You have  to  think  about  this,  interior  is

connected of course interior is connected but what about the points on the boundary. Why the

whole thing is connected that is what you have to show. But that will make you think what

exactly you have to use here. So next time we will do some more properties of manifolds. Mostly

we will now deal with only manifolds, that is, manifolds without boundary. Thank you. 


