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Hello, welcome to NPTEL NOC an introductory course on Point Set Topology Part 2. Today we

shall  start  a  new topic,  topology of  manifolds.  Manifolds are central  objects in the study of

topology. Though the idea of a manifold can be traced back to Riemann in his work on the so

called Riemann surfaces, of course, Riemann did not call them Riemann surfaces, obviously), a

formal definition of manifold may be attributed to Hermann Weyl. Its study is a must in any kind

of higher mathematics and things that use higher mathematics like theoretical physics and so on. 

Our  aim  here  is  quite  modest  dealing  with  only  very  few  salient  topological  aspects  of

topological manifolds as compared to deeper  studies such as you know, additional structures

such as PL manifolds, smooth manifolds, Lie groups and so on so forth, Complex manifolds and

so on. 

So, we are just taking topological manifolds which in some sense encompass all such special

things.  So, it  is  so,  general,  and therefore,  it  is  going to be somewhat  weak.  Statements  are

somewhat weak here. But they will be available for all those objects of studies. So, they are good

in that way. 
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First we shall study some topological aspects of manifolds in general. We shall then take up the

classification  of  1-dimensional  manifolds.  Next  we shall  merely  outline  the  classification  of

compact  2-dimensional  manifolds.  This  is  aimed  at  motivating  you  people  to  study  other

topological areas like algebraic topology and so on. Especially the NPTEL course on algebraic

topology, there are two courses. So, this will be a motivation as well as this entire course will be

a very good preparation for those courses finally. 
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So, today module 55, definitions and examples of manifolds. Fix an integer  take a non empty

topological space . By an  dimensional chart for  , we mean a pair  consisting of an

open neighbourhood  of some point x inside  and a homeomorphism  from  to .  is an

open  subset  of  ,   is  from   to   onto  an  open  subset  of  .  Often  when  I  say

homeomorphism,  it  is  not  necessarily  onto  here  but  onto  some  open  subset.  you  take  that

subspace topology there, it is a homeomorphism. 

Here I specifically mentioned that the image of   is open   that is very important here.   is

open inside   does not mean that   is open inside  . So that has to be told specifically.

That is the condition here. Now, once you have defined a chart, I am going to define an atlas.

These terms are borrowed from geography. I think all these things go back to Gauss. So, by an

atlas we mean a collection  of charts, such that what is the condition? The union of all

these domains of the charts must be the whole of . 

If there is an atlas for  , then we say  is locally Euclidean. In other words, the chart whose

domain contains a point  of , gives you local Euclideanesss of  at the point . If it happens

at all the points of , then  is called locally Euclidean.

A chart   is called a chart at   if   is that  . This is a very special definition, I

have cooked up. So, that I do not have to keep on saying that psi of  is .  is a chart at 

already means that  is in  and the function is such that the image of  is chosen to be the

origin. 

We also write  , for the  coordinate functions of . It makes sense because  is

taking values in  .  So, these   coordinate components functions of   are  also called local

coordinates for   at the point  . The local coordinates, remember, may not be defined on the

whole of , they are defined in a neighbourhood of this  and depend upon the choice of the

chart .
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Let .  be a topological space. We say  is topological manifold of dimension .

(i) if it is locally Euclidean in the above sense that there is an atlas consisting of n dimensional

charts, viz., (taking values inside ), that is the first condition, and

(ii) and (iii) conditions are just ordinary topological conditions viz.,  is Hausdorff space and II-

countable. 

So, these two extra conditions have been put, because we do not want to deal with non Hausdorff

space to begin with and we do not want to deal with non II-countable spaces either. Because then

we cannot do any fruitful analysis. 

Any countable discrete space is by definition, a -dimensional manifold. 

Do not confuse this one with the definition of -dimensionality for a separable metric space that

we have studies earlier. Of course, -dimensional manifolds form a subclass of the class of all -

dimensional spaces. But we insist that they are countable discrete spaces. We do not want to take

all  arbitrary  0-dimensional  spaces,  viz.,  second  countable  separable  metric  spaces  which

satisfying SII. So that is the difference here. The converse is not true because true for example

you may take the space of rational numbers inside , which is a -dimensional spaces but not a

manifold.



This takes care of definition of manifolds for . If you want to cover the case when ,

the you should take an empty set as a manifold to be consistent with the topological dimension

theory.
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However, there is no good way of assigning a manifold dimension to empty set. Some authors

prefer it to be dimension   just like in our dimension theory, and some others put it as  .

Indeed, there are theories in the topology of manifolds itself where it is better to treat the empty

set to have any dimension whatsoever depending on the context. (It is like assigning a degree to

the  polynomial. For the  polynomial usually people do not define the degree. But it is better to

keep  polynomial having any degree it wants, depending upon the context.) 

(Refer Slide Time: 09:42)



Observe that once the chart  exists at a point  belonging to  (means what now,  is

). Then we can choose another chart,  at  such that, this  is the whole of . In fact,

this  is going to take  to some open subset of , may not be the whole of . You can first

take a smaller neighbourhood   of   such that   is an open ball around  . Then you can

change  to   by composing  with a homeomorphism of the open ball onto the whole of  .

Therefore, you could have assumed right in the beginning, the definition of chart itself, that all

the  charts  have  this  property  viz.,  their  image  is  the  whole  of  .  But  that  is  not  always

convenient. It is better to have as liberal definition as possible. Strongest definitions allow less

chance for free work. That is all. 

Given any chart , by composing with a translation we can assume first of that 

and then we can choose  positive such that an open ball of radius  around  is contained inside

this open subset around   and then take   to be  . Then what happens   itself is a

homeomorphism  from   to  .  But  now   to  the  whole  of  ,  you  have  lots  of

homomorphisms, you compose  with them. For example, you can take  mapsto .

This is a very nice homeomorphism from   the open ball of radius   centred at   to the

whole of . 
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For an atlas, it is necessary to assume that the integer   is the same for all the charts, do not

change the  within an altas. Of course, if   is connected you are free to change also but you

have to use a  certain  theorem which we have  seen namely Brouwers  invariance of  domain.

Namely   is not homeomorphic to   if  . So, you will not have much chance there.

Because once different ’s are used, the dimension is anyway a locally constant function on .

But  but is connected, therefore, a locally constant function has to be a constant. 

So different integers can not occur for a connected locally Euclidean space.

So, that is a minor point. It is better to assume that you do not have spaces like a line and a

disjoint union with a point as a manifold. Such things we do not call a manifold. Because line

can be parametrize by open subsets inside , itself is a single parameterization is there. Single

point you have take it as a discrete space. Single discrete therefore it is   dimension. So do not

allow different dimensions with a single manifold. That is all. 
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+

Thus the dimension of  the chart  at  a  point  becomes locally  constant  and  a locally  constant

function on a connected space is a a constant function. 
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For topological space that is locally Euclidean  Hausdorff,  II-countabilty condition is equivalent

to many other conditions. A space is  locally Euclidean means a lot of things such as locally

compact,  locally  connected,  locally  convex,  etc.  In  addition,  II-countability  condition  is

equivalent  to  many  others  such  as  metrizability  plus  separability,  paracompactness  plus

connectedness  etc.  All  these  things  are  equivalent.  So  we find second countability  the most

suitable for our purpose and easy to understand. 

 The Urysohn’s metrization theorem that we have done tells  you that every II-countable  -

spaces  is  metrizable.  Locally  compact  Hausdorff  spaces  are  -spaces.  Therefore,  under  II-

countability they are metrizable. So, I could have put metrizability and separability also. Then I

can conclude that it is second countable.  

Therefore, we obtain every manifold is metrizable. In particular every manifold is paracompact.

Because we have proved metrizable space are paracompact. So, to sum up, suppose you started

with a locally Euclidean plus Hausdorff space. Then you add the condition that it is metrizable

and separable.  Then it will II-countable. Similarly,  you can add the extra condition that it  is

paracompactness and connected. That is also good enough to conclude that it is II-countable. So,

many such properties are interchangeable. 
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In particular given any open cover  of a manifold , using local compactness, we can first take

a refinement  of  consisting of open sets whose closures are compact. See I am now talking

about paracompactness. once you have paracompact you have partition of unity also. I want to

see something more here in the case of manifolds. So, what is that? 

Start with a manifold and an open cover. Take a refinement which consists of open sets whose

closures are compact. So, here I am using local compactness of . Such sets are called relatively

compact sets. (See we have never used this term so far. Many times we come across open sets 

such  that   are  compact.  This  terminology, relatively compact  means that  and that  is  quite

convenient. You could have used that terminology.) Then we can get a partition of unity  

subordinate to this .

Subordinate means, what? The family of support of  form a refinement of . Support of a real

values function  is by definition, the closure of the set of all points at which  is not zero. But

members of  are such that their closures are compact. Therefore this ’s have compact support. 

So, that is what automatically this will imply that will be subordinate to  also and with the extra

property  support  of  the  ’s  are  all  compact.  So,  this  is  not  true  in  general  an  arbitrary

paracompact space. You have a partition of unity, which is subordinate to any given cover. So,

this extra property will be quite useful now. I am going to use this one. 

(Refer Slide Time: 18:31)



 

So, let us see some examples now. If you have studied some differentiable manifolds inside ,

in you calculus course, like a circle, a sphere, parabolas, ellipses, ellipsoids and so on, they are

all manifolds. Take some time to see that. But I am not going to do that. I am going to do only

simpler examples. So that is your calculus course, full of examples of manifolds there. 

The boundary of the unit square as a subspace of  is a topological -manifolds. Even simpler

one is if you take a triangle, any triangle, the boundary of that triangle consisting of three sides

that will be a topological  -manifold. You may have learned that this is not a smooth manifold

inside  . It is not a smooth manifold because you know triangles have `corners', the squares

have corners and so on. 



The corner point cause problems. If you do not know that, do not worry, they are all topological

manifolds. Why? Because suppose you have a corner like this. What you can do? You can take

the two line segments on either side, the union is homoeomorphic to a line segment in . All that

you have to do is turn this vertical segment and make it horizontal like this on the other side.  

You  can  write  down  your  own  formula  for  this  using   etc.  and  write  down  the

homeomorphism. In fact, you can try to get a homeomorphism from this first quadrant to the

entire upper half space also. So, this is a nice illustration. This picture tells you how to handle

corners. See here at his point, locally the space looks like an open line segment. There is no

problem.  But  here,  what  is  the  argument?  You  have  to  just  straighten  it  out  to  get  a

homeomorphism into an open interval, that is all. 
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Now, let   be the union of two axes in  ,  -axis and  -axis. (You can draw similar picture

anywhere you do not have to take the axes itself). If  is any connected neighbourhood of ,

how does it look like? If you throw away the point   from  , it will have four connected

components. Therefore, you can see that such an open neighbourhood of   of this point  

inside , where  is the union of the two axes, cannot be homoeomorphic to an open interval.

So,  cannot have any chart covering  and hence fails to be a topological manifold. Note

that if at all you should have a chart at   it should be a homeomorphism into  , because



everywhere else except this point , you have neighbourhood which is homoeomorphic to an

open interval. But at that point , you do not have. 
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Now, I will give you a very specific example here which violates the Hausdorffness. We have

put  Hausdorffness  forcibly.  Suppose Hausdorffness  is  a  consequence  of  Local  Euclideannss,

then you do not have to put that extra condition. No, it is not a consequence. That means we must

give an  example.  What I  am going to  construct  is a  locally Euclidean, locally  -dimensional

Euclidean space, which is II countable also, or even compact also, no problem. But it will not be

Hausdorff. Let us see how. 

Let  be the set of all real numbers, (that is the real line) together with one extra point that we

shall denote by . We shall make  into a topological space as follows. Let  be the collection

of all subsets  of  of the form , where  is allowed to be empty or an open subset

of   in  the  usual  topology (for  empty  set  is  also  open subset  in  any  space,  but  I  want  to

emphasize this fact that it could be just empty, why are you writing  as ) and what about

?  is either empty, or  has the property. So, first part I said,  is a subset of  itself. That

means  is not there in . Now, the second part  may be empty or  belongs to . there, and if

you intersect  with  that means you are throwing away  from , and then take union with 0,

throw a  and put back just ) then that must be a neighbourhood of  inside . Is that clear? 



What is the relation between  and ? How does  look like. If you just ignore the other one,

then the rest of them looks like real line. If you ignore one of them, the corresponding subspaces,

both of them homeomorphic to . The two points  and  are very closed to each other in the

sense  that  you  cannot  separate  them  with  disjoint  neighbourhoods.  The  moment  you  take

neighbourhoods those neighbourhood will intersect. 

You see any neighbourhood of  in  contains an open interval in . Throw away  from it and

put back  you a neighbourhood of  . And the other way round, vice versa. Therefore   and  

cannot be separated by open sets. But they are different points in . So, this is why  is called

the line with a double origin. 

You can have such examples wherein several points will `overlap' instead of just two points, or

you can start with   and choose a discrete subset and double all the points in it in a similar

manner. They all will be locally  but not Hausdorff.
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You will  get  some strange  spaces,  which  we do  not  want  to  deal  with.  They  do not  occur

naturally, it is only a consequence of our definition, you know, the deficiency of a definition and

therefore, we have to impose Hausdorffness. 
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Let us, go ahead now. So, this is one which we have studied a couple of days back. The long

line, using our well ordering order topology and so on. We know that the long line is locally

Euclidean of dimension . It is Hausdorff also, what is it not? It is not II-countable. (It is not even

first countable if you allow the point Omega, but Omega is not allowed inside the long line). So,

it is I-countable, but it is not II-countable. So, the long line is not treated as a manifold. So, that



is an example, we do not want to consider long lines as manifolds because which you cannot do

much analysis on them. 
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Another  type of  non example  is  obtained  by taking disjoint  union of  manifolds of  different

dimensions. This I already dealt with. Like taking the real line and a singleton point outside or a

line and a  disjoint  plane.  Such things are not  allowed,  we do not  want  to consider.  So, for

example, such spaces are there if you go to algebraic geometry, Wherein, even larger class of

objects are studied. 

Let us, consider some examples of manifolds that do not occur naturally as subspaces of . So

far our examples where all subspaces of  and only some counter examples were not subspace

of . 
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Now, let us see something which does not occur naturally as a subspace but they are manifolds.

So, this is a very important example, the projective space. The foremost one is the -dimensional

real projective space which we have introduced in part I. But let me recall at least a few aspects

of this.  I  hope you know it,  if  you do not know you can read it  from Part  I  notes or  from

elsewhere.  

So, what is the definition of  ?   is the quotient of the unit sphere   inside   by the

antipodal  action. What does  that  mean,   and   are identified for every  .  Antipodal

action means  goes to .

So, look at the equivalence classes, I can denote them by  and take the quotient map  from 

to  to be . So, put the quotient topology on . So, the topological space is defined.

Automatically, since  is a surjective map, and  is compact, therefore  will be compact. 

So, we have to see why it is locally Euclidean and Hausdorff etc. We are happy because it is

compact space already and so it will be II-countable also. Now, given any   belonging to  ,

consider  to be the set of all points  in  such that the distance of that point  from .  

So, take the open ball of radius  around  and intersect it with , that will be open

subset of . Now, if you take  going to , under that, this open subset will go to a disjoint

open subset. Therefore, if you restrict the map  to  that will be an injective map and is actually

a homoeomorphism and its image in   will be open. It is not difficult to see that   itself is

homeomorphic to an open subset of  (by taking the linear projection parallel to the vector ). 



So, that is the nice neighbourhood. So, this will give you local description that every point inside

 has a neighbourhood which is homoeomorphic to an open subset of . 

Indeed this also tells you that the space is Hausdorff now. Because what you can do is, let me see

I will tell you something more.
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Take  and  two distinct points in , what does it mean?  is not equal to . If  is not

equal to , these classes are different means  is not equal to . So you have four different

points in  . You take the least distance between any two of them. Call that epsilon and take

open epsilon balls  around each of these four points  and intersect with . You

get four mutually disjoint neighbourhoods of these four point in . 

First of all, observe that the antipodal map takes  to . It follows that under  these

four balls define two disjoint neighbourhoods of  and  respectively.  
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So I included some exercises here. Show that a manifold is connected if and only if it is path

connected. 

So, this is a very easy exercise. But there is another exercise here this is not very central even if

you do not understand this, it is okay for some time. So,  this any actually explain our obsession

with Hausdorffness and local Euclideaness.

So, you look at the co-finite topology on . Clearly it is not a Hausdorff space. But is it locally

Euclidean? 

(You can ask other questions too. We have given examples of spaces which are locally Euclidean

and  not  Hausdorff.  Does  Hausdorffness  imply  local  Euclideanness?  There  are  many  such

questions. So that is why I am discussing this example.)

You can take a look at it and if you have difficulties you can come back to us. So, today let us

stop  here.  Next  time,  we  shall  introduce  a  larger  class  of  manifolds,  viz.,  manifolds  with

boundary. Thank you.


