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Hello, welcome to NPTEL NOC an introductory course on point set topology Part II module

54,  groups of  homeomorphisms.  Remember this  is  a  part  of  our  study of  compact open

topology. So for the rest  of this talk we will always assume that   is  a locally compact

Hausdorff topological space though we may not mention it again and again. And let  

denote the group of all homeomorphisms of , self-homeomorphisms. 

Let  denote the compact open topology on . We discussed the problem whether this

 with the compact open topology is a topological group or not. It is shown that this is

not so in general. In general means just under this hypothesis namely  is locally compact

Hausdorff. It is also shown that under the additional hypothesis that  is locally connected,

the answer is yes. 



An example to illustrate that local connectivity is not always necessary, is included that is not

correct thing local connectivity is necessary is included.

The motivation for this discussion is that a positive answer to this problem has applications in

bundle theory. We are unable to locate any discussion on this topic in the existing literature. 

Main  question  is  the  following:  Does  the  set   of  all  self-homeomorphisms  of  a

topological space   form a topological group under the compact open topology with the

usual  composition  law  of  functions?  Whenever  you  take  self-homeomorphisms  or  self

automorphisms of any kind the group law is always the composition law.

Of course it is natural to demand that  is locally compact Hausdorff space, because we are

dealing with compact open topology. It seems that all working mathematicians who have to

use this result assume the truth of it. I too have been assuming this though I have not used it

in any of my research works. The point is that the statement is true for a large class of spaces

which are interesting to topologists. 

For instance if:

(a)  is compact, we will see an easy proof of the assertion here;

(b)  is discrete, you can do it by hand and see that this is also okay,

(c)  is a manifold, this case is not easy;

(d)  is a locally finite CW complex that is also not easy. 

So these are the things, some sort of proofs seems to be there in the literature but nobody has

written  down  it  anywhere.  So  whenever  people  have  used  it  especially  for  manifolds

apparently they are sure of that the result is true somewhere so that is the whole situation. 

So it turns out that this question seems to be harder than the original question, indeed one can

more or less see that the two questions are equivalent at least these harder in the sense it is

stronger in a sense, if this is true then you can get an easy proof this question, this main

question.

We first noticed that the proof of an affirmative answer to the above question in the case

when  is compact is quite easy. So naturally, our first attempt to prove the same for a non-

compact locally compact Hausdorff space is to go to the one point compatication , use the

theorem there and try to bring back, try to come back to the original space . 



Note  that  every  element   belonging  to   has  a  unique  extension   which  is  also

homeomorphism of the one-point compactification, such that the extra point  is just the star

that point at infinity whatever you want to call   is the one point complete equation here.

Also note that the association   going to   can be used to identify the group  with a

subgroup of , namely those which fix the point at infinity. 

Therefore we are led to ask the following question. Does the compact open topology on

 coincide  with  the  subspace  topology  from  ?  Start  with  ,  give  the

compact open topology to it, you can take the subspace topology on   because it is a

subset now you can treat this actually as a subgroup also. But the question is whether that

subspace topology is the same as the compact open topology on .  

So it turns out that this question seems to be harder than the original question. Indeed one can

more or less see that the two questions are equivalent. The second question is stronger in the

sense if it is true then you can get an easy proof the original main question.

So, the answer to our main question itself is not always in the affirmative. The example that

we have is obtained by removing origin from the standard deleted middle one third Cantor's

set in the unit closed interval. On the positive side we have the following result. Let  be a

locally  compact  locally  connected  Hausdorff  space  and   denote  the set  of  all  self-

homeomorphisms  of  .  Take  the  compact  open  topology  on  .  Then  this

 is a topological group. 

On the way to prove this theorem we shall see that the result holds for all compact Hausdorff

spaces without the extra assumption of local connectivity, so we do not have to prove that

one separately. 
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So let us start proving it.  But there will be many interruptions in between, so let us hope we

can start proving. Recall that the compact open topology is generated by subbasic open sets

of the form,   is  nothing but the set  of all   belonging to   such that   is

contained inside . You remember this notation we used for all continuous functions from 

to , when we are dealing with space of all continuous functions. Here I have restricted this

notation to only homeomorphisms of  to . 

Therefore, the same notation I will use to mean certainn subsets of   only. So, I have

redefined it carefully here. This is actually the old notation   intersected with  .

Pay attention to it.

In any case ,  is a subspace of all continuous functions from  to , so this is subspace

topology. Therefore if you take subbasic open sets in the bigger space, and intersect them in

with the given subset, they will form a subbase for the subspace topology, so there is no

problem.  So this is the subspace topology from the compact open topology on all continuous

functions. 

For  a  locally  compact  Hausdorff  space,  from  part  (b)  of  our  earlier  theorem  namely

exponential correspondence theorem, the continuity of the composition map 

to  , viz.,   mapsto  , is a consequence of the continuity of the corresponding

function  under  evaluation  map  and  so  on,  viz,   mapsto   from

 to . This is a function into . 

We have used this criterion several times now, we are going to use it now also. 



So how to  verify  that  this   mapto   is  continuous? From the product space

 to ?

So to verify this, fix  and  and an open set  such that  is in U. Then I have to

produce a neighborhood of  cross a neighbourhood of  cross a neighborhood of  such that

under this function the entire neighborhood goes inside  . So that is the continuity at this

point .

So, start choosing an open neighbourhood   of   such that   is compact and   is

contained inside . So this I can do becuase  is continous,  goes inside , and  is

locally compact. 

Similarly once you have chosen this , now  goes into , therefore you will get an open

subset  such that  is inside ,  compact and  inside . Now it is straight forward

verification to see that angled bracket , , (so this  is compact and this  is open, so the

set of all homeomorphisms taking  into ), that is a neighborhood of neighbourhood of 

because  is one of them.  

Similarly, angled bracket   comma is a neighbourhood of  . So the product of these two

with  is a neighbourhood of . Now take any arbitrary element  in this open

set. The  of  belongs to  and  of that belongs to .

This proves the continuity of the composition law. 

So in particular it follows that once you have proved that the composition is continuous you

can fix  and look at  going to , so that is the left multiplication by , fix , then  going

to , that is the right multiplication by , both of them will be continuous from  to

).  That  is  all  standard  stuff  whenever you have topological  semigroup.  So, the left

multiplication   and right multiplication   both of them are continuous, from   to

. 

The main thing here is to prove that the inverse is also continuous. Once you prove that it

follows that the group laws are continuous, therefore the  is a topological group. So this

is what we have to prove. 

Here  is  an  elementary  result  that  we  want  to  use.  Since  this  does  not  seem to  be  very

common, let me just take a few minutes to state it clearly and then prove it also. This is a

general result about group operations on topological spaces. 
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Let   be a topological space with a group operation   to   being continuous. Only

assumption is that the multiplication is continuous. Suppose the function  from  to  given

by  (that is called the inversion map) is continuous at just at   in , the identity

element. Then  is continuous on the whole of . 

This kind of results  we must have used in any topological group itself. Like if you have

homomorphism from one topological group to another which is continuous at one point, it

will be continuous on the whole of group. Similarly for differentiable functions on . If they

are group homomorphisms then differentiability at a single point will imply differentiability

everywhere. Such kind of results I am sure you are familiar with. But in all of them, you

already have a topological group. 

The same kind of technique is being used here to prove continuity of the inversion itself, only

under the assumption that the group composition is continuous. So that is why this is not all

that common, so let me tell you the proof. 

We  first  note  that  for  each  ,  the  left  multiplication   and  right  multiplication   are

continuous, because the multiplication itself is continuous. Since   is equal to   and

 is , it follows that  and  each of them is a homeomorphism. First of all they are

continuous but same reason  is also continuous, because  is just another element in .

So now let   belonging to   be any element. We want to check the continuity of   at that

point. So first you check the following thing. 



The inversion  is nothing but  as a function from  to . This is very straight

forward verification. This is true in all groups.

Since   is also continuous on the whole of  , it follows that  is continuous at  ,

because   is  continuous  at  .  So  when you take  the  composite  with  another  continuous

function, the composite will be also continuous at . 

So this side now  ,  we know is continuous at  .  But now   is  a  homeomorphism.

Therefore it will follow that  is continue at . So all that you need is to use viz., 

is an open mapping, so this will be easy. 

So, let us use this result now, namely continuity at one point, namely at identity is enough to

conclude the continuity on the whole thing. Therefore come back to this special case now. 

the inversion map from  to , I have to prove that it is continuous at the identity

element of this group .

Note that the inversion, by the very definition, inverse of   is   itself and .   an

involution,  is . 

So showing that it is continuous is the same thing as showing that it is open. We need to show

that the image under  of   are neighborhoods of  , where   is compact and   is

open and such that  is a subset of , (  belongs to this set means that) are open in .

These are subbasic open sets and therefore that is enough for continuity of . 

 So just do this elementary algebra now. Here  is a point of  means  is inside

, that means  is inside  that is same thing as saying  is inside  because

 belonging to . 

So starting with a subbasic open subset you have to show that this is an open subset in the

definition of compact open topology. Notice such sets are not there in the subbase. You see to

allow this as a subbasic open set, I need this one to be compact and this one to be open.

Luckily since   is compact,  it is closed, so the compliment is open, but why   must be

compact? 

 is just an open subset. That is why this is a non trivial problem. 

Any way we not need to show that this actually open. We have to only show that this is a

neighborhood of identity that is enough.



Therefore, we need to prove that sets of the form  where  is any open set and  is

compact,   contained inside  , are neighborhoods of identity of  . Of course we need to

consider only the case when  is non-empty. If  is the whole space  will be empty, and

if  is empty,  will be the whole space so this will be automatically satisfied. 

And we need to consider only the case when  is non-compact. If   is compact then this

set is a subbasic open subset, there is no problem. So in particular if  itself is compact then

the  will be compact and hence there is nothing to do. Therefore,  is continuous when  is

compact. Note that so far we have not used local connectivity of  at all. Just assuming that

 is compact Hausdorff space is good enough. 

Now, we want to use local connectivity of .  

So here is one more elementary Lemma, so we should state and prove this separately instead

of including it in the run of the proof.

Let   be a locally compact, locally connected, Hausdorff space. Let   contained inside  

subsets of , such that  is compact and  is open. Then there exists an open subset  of 

such that this   is a union of finitely many connected open sets, each of which is actually

compact also, (and hence in particular),  is compact and  is contained inside  contained

inside  contained inside . 

The statement is that begin with  is compact inside  which is open. In between you can

always get another open set  contained in  by regularity. But what I want is that this 

itself is the union of finitely many connected subsets and each of them such that their closure

is compact so that   will be also compact. So that is the extra thing and that extra thing

comes from local  connectivity.  The  rest  of  the statement  is  because  of  comapctness  and

Hausdorffness.
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Let us go through proof this. It is not a difficult thing. 

For each point , because  belongs to  and  is open and because the space is locally

compact and locally connected, I can choose open   such that   belongs to   contained

inside   contained inside   such that this   is connected and   is compact.  First  you

choose   such that   is compact and inside  . Now using local  connectivity,  you can

choose another open set   which is connected and its closure will be contained inside the

closure of , which is compact and so it will be also compact. that is the way you can prove

this one. This is possible because  is locally compact first and then locally connected also.

Since   is compact you can get a finite cover for  , viz., there exist   all of

them in   such that   is  contained inside the union of  's, i ranges from   to  . I am

denoting that union by . So  satisfies the assertions of the lemma. Over. 

So we will use this lemma.  

Now let us continue with the proof of theorem. So let 's and  etc. be as in the previous

lemma that we have proved just now. I will put  equal to . I am starting some some kind

of induction here. Not very deep. 

Using the regularity of , remember this  is compact and contained inside , so I choose

this  , it  is contained inside  , so in between I will choose another   which is a

compact neighborhood of , i.e. interior of  contains , and  is contained inside . So,

similarly in between  and  again another one denoted by  such that  contained in the

interior of ,  is compact and contained in . So these are all compact subsets now  and

, their interiors contain the previous one, so  are all contained inside . 



Now you take   equal to interior of  . By the way this kind of things we have done

several times while studying paracompactness etc. Whenever you have Hausdorff and locally

compactness and so on so you are using kind of normality, here, a strongly regular property

because things are compact and so on. 

So take this  to be interior of  setminus this closed set , so this is an open subset. And

put  equal to just the boundary of this ;  is a compact set, throw away the interior of ,

so that is  which is boundary of . 

So here is a picture of what we have done so far.  We started with this rectangle here  

contained inside this large open set  here. In between the first thing was to take a  such

that   is the union of finitely many connected open subsets such that  closure of each is

compact. So those are the 's, which cover the whole of  and is contained inside . That

is all. After that I have chosen the notation  to be , so there is a compact set contained in

, then I choose  then I choose . So that is all the picture is about. What is this ? This

 is this interior of , so that is an open subset. And then  is just the boundary of .

So I have drawn some nice pictures here. My pictures may not be all that nice. There I have

drawn a circle here and so on, this  need not be connected etc. The only thing is this  is a

finite union of connected sets. There is no other properties.  may not be connected,  may

not be connected, nothing. There is no connectivity assumption anywhere else. 

Now you take  equal to the intersection of  for all  further intersected

with . So this is a finite intersection of subbasic open sets and hence is a basic open set.

Since  is inside  for all  and  is contained in , therefore identity map of  belongs to

. 

Therefore  is a neighborhood of identity of  in . 

Now look at the complement of . This is contained in the complement of  also because 

is inside . And complement of  contains complement of , because  is contained in .

So I  am just  taking De Morgan  law that  is  all.  It  follows  that   is  contained  in

. This is just a set theoretic property of this angled brackets. That is all.

Therefore  it  suffice  to  prove  (we  want  to  prove  what?)  we  wanted  to  prove  that  this

neighbourhood  of  which we have selected, is contained in this open subset .

So instead of that we can just show that this  is contained inside this smaller set, that is a

stronger statement. So let us prove that  is contained inside .
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Now consider   which is a closed subset, and look at  .   was the boundary of  .

Therefore its complement is the union of interior of  and the the complement of . Both

are  open,  they  are  disjoint  and  the  union is  precisely  ,  boundary  of  .  This  is  a

standard way of getting a separation, this is nothing very special about . 

Now take any element of , a homeomorphism of . (Any homeomorphism will do for the

conclusion that follows, but we are interested in what is happening for elements of .)  Since

 is a homeomorphism,  of this separation will be another separation, of course of the space

. A separation gives rise to separation under a homeomorphism. 

Now look at all the points 's which are inside 's respectively, and each 's is connected

and contained in   interior because they are inside   itself. So we have   are inside

. Also  is contained inside  in this picture if you remember  belongs to  and 

is contained inside , and so,  remains in , and hence does not intersect any of the

's because 's are inside  interior. So I have subtracted the entire of  from  interior

so that is , and hence all the 's must be inside .

But each   is connected, this is a separation, therefore each   must be in one of them,

either  or . On the other hand  is non empty because  is in both of

them. Here again we use the definition of  and the fact that  is in . Therefore all the 

are completely contained  . So the entire   which is the union of  's is contained

inside .

But then look at  the complements.  We get   contains the complement of   which

contains the complement . So what we have proved?  is inside , what does that



mean?  is inside the . Started with an element  in  and showed that it is here, so

the proof is over. 

Indeed the next thing namely producing a counter example. If at all you think that the above

proof  was difficult,  then  that  will  be little  more difficult.  So let  us  come to  the  task of

producing the counter example.

Before that I will tell you some history, this history is very recent. After all it is just about

three years old so whatever I remember I have put it here already. 

Attempt to find a justification for locally connectedness assumption in the above theorem,

initially led us naturally to the topologists' sine curve. Recall that this topologists' sine curve

is a subspace of , it is a compact also and which is the union of the graph of  on the

interval , together with the closed interval  on the -axis. I cannot go into the

full  study this space  now but I  am just  recalling that  this being a compact  space,  if  you

compact  open  topology  on  the  set  of  self  homeomorphisms  of  this  space,  that  will  be

automatically a topological group as seen during the proof of the above theorem.  

So what we want to do is destroy the compactness by removing a point. So do that, namely,

take this very special point  (or equivalently ). These are two special points there.

So remove one of them and obtain the topological space  which is now non compact, it is

locally compact, it is a subspace of  and so it is Hausdorff also. And it is connected, but not

locally connected. It is not locally path connected, it is not locally connected either. 

We can then think of the original space as the one point compactication of , so I was trying

to prove (or disprove actually I was trying to prove) that in this case there is an assertion,

namely,  an  affirmative  answer  that   is  a  topological  group.  But  it  turns  out  that

understanding the group structure of   is very important here, and we do not know it

very well yet. So I have to abandon this example.

 But this leads to a sub question here namely (this attempt is what is important here) 

going to one point compactification, instead of just trying to work out this example, try to do

it in general. So that is why we have this sub-question. So the point is that I wanted to say

that this attempt was not successful, yet, I have not given it up completely of course. 

So the next attempt is with,  you can guess, what is it: the Cantor set. So Cantor set did help.

So let us study the Cantor set now. Cantor set is also compact, remember that. So I want to



destroy the compactness by removing a convenient point, you can perhaps do it with any

point but most convenient is remove the point . 

So recall that the deleted middle one third Cantor set  is obtained by deleting opne middle

one-third of the interval  and keep repeating this operation on each of the resulting closed

intervals.  

So if you take some open interval of this length 1 by 3 power n, such as i/3^n to i+1 by 3^n)

and look at its intersection with C, that  may be empty because this interval may be already

contained in one of the deleted parts. But if it is not empty,  then it will a carbon copy of the

Cantor set again. 

Any subspace of  of , which is of this nature, namely homeomorphic to  will be called a

Cantor subset. Instead of starting with the open interval . I could have started with any

interval and performed the same kind of operation of deletion on it. That is all. So we shall

use the following facts about a Cantor subset, so Cantor subset I am denoting by . 

(i) So each  , each Cantor subset is homeomorphic to the entire Cantor set  , through an

affine linear map. An affine linear map which will send the end points of the starting interval

to  endpoints  of  ,  that  will  automatically  give you a  homeomorphism of  any Cantor

subset with .  

(ii) Each  is clopen in  open as well as closed,

(iii) If  is a non empty open interval and  is non empty, then  contains a Cantor

subset. In each open interval we have such a thing. That is the property of the Cantor set . It

re-appears inside every open interval intersected with .  

(iv) Finally, this may need a little more difficult to prove, similar to our lemma about local

connectivity and so on, but see here this is a different kind of game. But the proof is not

difficult. 

Take any Cantor subset   contained in the finite union of some compact subsets   Then

there exists a clopen subset   of   which is homeomorphic to  , (that means   is also a

Cantor subset) such that  is non empty implies  is completely contained inside . 

There are finitely many of  's. Look at   say.   is non empty then the entire   is

contained in . If it is empty it is fine; so some of them may not intersect . moment they



intersect they will completely contain , so that is the meaning of this one. This property is

crucial and is used in a peculiar way, You will see. 
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Now I take  to be the Cantor set . We claim that the inversion map  from  to

 is not continuous. So   cannot be a topological group under the compact open

topology. 

As seen before it is enough to produce a compact subset  and an open subset  such that  

of   which is equal to   (this we have seen already) is not a neighborhood of

identity of . Over. 

So our choice is   the closed interval  . So this is another Cantor subset. First,

, which contains . I have thrown away that point. Now I am taking the part of 

inside . That is my  which is a clopen in . So I take that itself as  as well. It is

compact, it is open, so I can take   which is a neighbourhood of . Now I have to

show that  is not a neighborhood of identity of .  

So for brevity, we will just put  equal to  which is . Remember where I am taking

the complement here, in the space . We now show that this  is not a neighborhood

of identity. 

The statement is clear. So far there were only notations. So now the proof starts. 

Let  be any finite collection of compact subsets of , let  be open subsets

containing ’s. One more  you have to take, namely put  .

You include this also in the list. 

We claim that the intersection  ranging from  to  of  is never contained in .

These are all the basic neighbourhoods of  , i.e.,  any open neighbourhood of   will



contain an open subset of this form, because these are basic neighbourhoods of . Taking

intersection with the extra open set  does not change this property.

Even after taking the call intersection it is not contained is the RHS above. Even the smaller

set is not contained in. Of course,  larger set also will not be contained in. So that is why I can

take this intersection with this extra open set also. So this is a special one I have taken but

these are general things, so that will show you that  is not a neighborhood of identity.

So you have to construct a special function  here belonging to LHS but not to RHS

The idea is to construct a homeomorphis   from  to  itself, by shuffling suitable Cantor

subsets such that  goes to  so that if you throw away , it is still a homeomorphism from 

to , and of course, this  is on the LHS here but not on the RHS.

Now the construction starts. Look at these finitely many  which are compact

subsets of .  is not a point of . It is inside the Cantor set . 

So this distance  is positive. This is the usual distance in  nothing more than

that.  It  is  positive.  Choose   such  that  ,  so  that   that  interval  does  not

intersect any of these 's that is all. A small closed interval around  is taken of course  will

be thrown out afterwards.  That  interval  is  not  intersecting any of these  ’s.  That  is  the

important step here. 
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Note that this  whatever we have chosen, is one of the Cantor subsets. Put  equal to .

Then  is contained in the union of . So, by remark (iv) above, there exists

a clopen subset  which is a copy of the Cantor set such that this  is contained inside , 

range from  and the rest of the  do not intersect . I have to possibly re-index

these 's for this. 

For example suppose 's were all disjoint from . Then I can take this  equal   itself

and there is no need to re-index. Note that  is a special one,  all other  are arbitrary, you

can label them whichever way you like. You do not know in which order they are occurring.

This  may be just zero also as in the above case or it may be  iteself. It does not matter, the

rest of them do not intersect  at all. So,  has to be chosen that way. 

Now, let us do some more splittings. Whole idea is that a Cantor subsets can be written as a

disjoint union of as many copies of itself. So that is the whole idea. (This fractal property of

the Cantor set is used here very nicely.)

Take  .   does  not  intersect  any  of  the  's.  The number   has been

chosen that way. 

Write  as a disjoint union of two Cantor subsets  disjpoint union . Recall how  is

constructed from the interval , you remove the open middle one third first, so you get

two disjoint intervals, intersected with A they will give you  and . You can always do

this, whichever way you like, it does not matter. 

Now you write each  equal to  disjoint union with  for , possible because

these ’s contain . 



What is ?  is a Cantor set. Therefore it is clopen, so  will be also clopen in . But what

happens to other 's? Do not have to worry because  does not intersect that part. Finally

you  also  write   itself  as  disjoint  union  of  clopen  subsets   and  .  So  all  these

 they are all Cantor subsets, the disjoint union of non empty clopen

sets. 

Now we assume that  is in . Remember the whole space  contains  and so  is either

in  or . By changing the indexing you may therefore assume that  is in . 

Now look at the union of all these subsets that is a clopen set inside , so the entire  can be

written as a disjoint union of   and finally another clopen set   which is jst

the complement of the union of earlier ones in  . Now the major work is over. Now I can

define the homeomorphism by merely shuffling these subsets. 
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So one thing you have to notice is this   contains the complement of   inside   and all

those 's which  does not intersect, namely,  for  ranging from  to .  may contain

other things also. So now define f from C to  as follows. 

(i) First  from  to ;  is a subset of , but both of them are Cantor subsets. So take a

linear homeomorphism which is order preserving. Note both of them contain   as the least

element so automatically . Order preserving will automatically implies that 

(ii) So let   from   to   be the order preserving linear homeomorphism again, both of

them are Cantor sets there is such a homeomorphism. (So they are all disjoint, so I am totally

independent in defining these homeomorphisms, so  on this one,  on this one and so on.) 

(iii) Then  from  to  be the identity map.

(iv) Lastly let   from   to  , again the order preserving affine linear map. Earlier, I had

covered the  part. Now I am covering  part.   

So, since I have covered the entire of   because they are all disjoint subsets, and they are

going to disjoint subsets, the domain and image are covered completely. So all this partial

homeomorphism patch up to define one single  which is is a homeomorphism from  to .  

Since  is , if you throw away , then  restricted to  is a homeomorphism from  to .

Now look at  (iii).   is identity on  . And (iv) says   is mapped to  , so these two are

important. It follows that this  takes  to  for  onward, because where are they are

inside  and  is identity on . What about these ’s, ? 



For them  are again inside  and so no problem, only the (ii) part you have to check. But

 is going inside , which is again inside each . So this ’s going inside . I am not

claiming that  restricted to  are homeomorphisms onto . Just that  takes  into  for

each . 

So  is here. So that was the first thing we want to show.

Now finally I have to see that  is not in , since  sends  which is inside  to all

the way inside  . Remember this   was a subset of  ,   is somewhere away.

What is ? Remember  is the complement of . Let me just show you what  is to begin

with.  is a short notation for complement of  in . and my  itself is . So it

has gone out of the complement so it is not going inside  at all. Therefore, this  does not

take  inside .

So the proof is over, namely, the group of homeomorphisms of , the punctured Cantor set is

not a topological group. 
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So there are a couple of questions that automatically arise in this context,  namely, find a

criterion for  under compact open topology to be a topological group where you try to

put some condition other than  to be locally compact Hausdorff space. The criterion means

what? if and only if statement.  

Equivalently you can take one point compatification, try to solve the subspace problem, if the

subspace topology on  coming from , whether that is the same as compact open

topology. Or you can try to solve this problem in the case of sine curve and so on Interesting

cases like that so there are quite a few problems left here.  

I told you that these things were done very recently about 3 years back, so during a workshop

in characteristic classes in which Shameek Paul attended it and we were sharing a room for

some time and that time I was discussing this with him. Then I am thankful for Allen Hatcher

also. I asked him whether he knows anything about this. He says he does not know but maybe

he will have a look at what I did.  Then I asked Dennis Sullivan and so on. 

The most important of all,  my initial attempts were discussed with Parameswaran, so he said

look here you have to be careful. And he painfully went through the initial versions with so

many typos and so many miscalculations there. But he saw through the whole thing and made

a remark where I should be careful and so on, some warnings. 

So I should thank all of them. Of course I thank you for listening to this one also it is a good

opportunity of presenting this one, so thank you. We will meet next time. 


