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Hello, welcome to module 53 of NPTEL NOC on point-set-topology part II. The title of this

today's talk is an application to quotient maps and of the exponential correspondence that we

have studied last time. A natural question that arises with respect to the quotient topology is

the following. 

Suppose, you have two quotient maps  from  to  equal to  and , is the product map

 from   to   a quotient  map? So, you may be surprised that,  in the

general this is not true. See surjectivity will be still there, continuity still there. That is all. If

 and   are open maps the product is also an open map and hence quotient map. But in

general, we have to study other quotient maps, not all quotient maps are open maps. 

So, here is one satisfactory answer. In any case, this question was actually raised in part I

itself when we were studying quotient maps. So, today we will have a satisfactory answer. 

In general,  can be written as  cross identity composed with identity cross . This is

just a set theoretic fact and nothing to do with quotient maps. So, if I can shown that each one

on the right hand side is a quotient map, composite of quotient maps is a quotient map and

hencw  will be also quotient map. 
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Therefore, question is reduced to the special case when out of  and , we assume one of

them is an identity map. By symmetry, whichever one we assume is identity map, it is the

same thing.  cross identity or identity cross . If we show that for all , this is true that is

fine. It is also fine if it is true for all . 

So, what we shall do? We shall show that if X is locally compact regular space, Then for any

quotient map  from  to ,  cross identity of  is a quotient map. So, this is the condition

on , locally compact regular, or locally compact Hausdorff (which anyway implies locally

compact regular).  
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Let us recall a fact about quotient topologies. A continuous surjective map of topological

spaces is a quotient map, if and only if it satisfies the following property. Given  from  to

 that is a continuous surjection, when is it a quotient map or when the topology on  will be

a quotient topology? That is the condition for every topological space  , every function 

from  to  some set theoretic function, if the composite  is continuous, then  must be

continuous.  is continuous then the composite is continuous is obvious, because composite

of continuous functions is continuous. Here it is the other way round. If this is satisfied for

every  , then  will be a quotient map. So, I am not going to prove this one, this has been

proved and used several times. And we will use it now. 
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Starting with a quotient map  from  to , under the hypothesis that the topological space 

is  locally compact and regular, we are going to prove that the product map   is a

quotient map. What we need to prove for this? We need to prove the following condition:

Take any , and  from  to , any function, such that when you compose it with 

cross identity that is continuous, then  is continuous, this is what we have do.

So, this is the diagram:  Y cross X to Z cross X, q cross identity of X, we want to prove this is

a quotient map. So, take any W, and any g here,  assuming that  g composite, this q cross

identity is continuous,  we have to show that g that is continuous.

Now, how do you use the exponential correspondence here. When you have a continuous

function  on  to , we know this is the same thing as saying that there is a continuous

function from  to the space of all continuous functions from X to . See, what is that map? 



It is given by the exponential correspondence. This  corresponds to  here given by  of any

 operating upon  is  . So, you get a continuous function. The exponential

correspondence says that  is continuous if and only if  is continuous. So, this we are going

to use now. So, once you have this continuous function , we get  continuous. Similarly, for

the function  ,  we get  the corresponding function   from   to  .  I  do not  know

whether  it  is  continuous,  but  what  I  know is  that   is   because,  by definition,  

operation on any   is  . Putting  , we easily check that  .

That means  is . Since  is continuous and  from  to  is a quotient map it follows

that  is continuous. But once  is continuous, exponential correspondence says that this  is

continuous. The proof is over. 

So, we have not proved that product of any two quotient maps is a quotient map. That is not

true. If one of them is locally compact Hausdorff, or locally compact regular then it holds.

This is what will happen. 
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So, now we can use that to just give you satisfactory answer. This is not an `if and only if'

kind of answer. But it is a useful thing. Suppose you have   to  ,   a

product of two quotient  maps.  From   to  ,  in two different  ways.   cross

identity of  , then followed by identity of   cross  . Or first identity of   cross  , and

then followed by   cross identity of  . So, the statement is that if   and   are locally

compact regular, this composite is a quotient map because each of them is a quotient map. 



Or you may use the other hypothesis here namely  and  are locally compact and regular .

So,  , or  . There is no necessity that both should hold.   and then   is a

quotient map.

Or you may use the other hypothesis here namely  , say  is a question map,   is local

compact regular, and here  is locally compact regular. So, , or ,   or there is no

necessity that both should be there.  and , or  and  that is the meaning of this one.

Locally compact Hausdorff space. Then  is a quotient. 
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Now, we come to the main theorem in this section, in this today's talk and that is due to

Michael. So, here is a partial converse to the above theorem. Start with a regular space  (or

maybe you can start  with a Hausdorff space,  it  does not  matter, one of the hypothesis is

important.) Then the following conditions are equivalent. So, it is only a partial converse,

regularity cannot be replaced. 

(i)  is locally compact. 

(ii) Every quotient map  from  to  , the product identity of   cross   is also a quotient

map. 

(i) implies (ii) is what we have seen. (ii) implies (i) is the converse that you have to prove. So,

if this happens viz., for every quotient map  from  to , identity cross  is a quotient map,

then  must be locally compact.



This is much stronger than just producing an example of a non locally compact space  but

here this is a theorem, which says that for every non locally compact space this happens. 

How do you prove this? By assuming that  is not locally compact, we will construct a space

 and a quotient map of  to , such that identity of  cross  is not a quotient map.
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Here we are going to use the exercise 10.9 fully. This is part of your preparatory assignment

or practice assignments 10. This was not in the main part of the assignment but in the practice

session. The main result is this exercise is another not so familiar criterion for compactness.

That is also part of this one. If you have not done it, or tried it, it is time that you should read

the solution given. 

However, right now, I cannot afford to go through that one. So, what I will do, I will just

recall this exercise here and then use it. Look at this part (4) here. So, this is the main thing

that I have to use. Let  be a topological space. Show that  is compact if and only if the

following condition holds:

For every family   of closed subsets of   with finite intersection property,  and linearly

ordered by set inclusion, we have intersection of all members of this  is non empty.

Remember,  if  I  remove  this  `linearly  ordered  by  set  inclusion'  phrase,  if  I  remove  this

condition, then this is a familiar theorem for you. Namely, if every family of closed subsets

of   with finite intersection property has a non empty intersection then   is compact. So,

that is a more general and weaker condition. So here we do not need that. Only those families

which are linearly ordered by set inclusions are considered. (You can either take inclusion or

reverse  inclusion,  it  does  not  matter).  This  is  somewhat  similar  to  Cantor's  interection

theorem,  a  kind  of  converse.  However,  don't  be  mislead  by  this  analogy,  there  is  no

countability assumption here.  is just a linearly ordered. That is the whole point here. Now,

try to prove this one, but later on anyway, we will give you a solution. 



The other thing is this problem (3) here. Let  be sorry, this one namely problem (2) here.

Let  be a non empty linearly ordered set with . Then there is a non empty subset

 of this   such that   is  cofinal  in  , and restricted to  , this ordering itself is  well

ordered. Moreover, the point  that you have chosen is the least element of .  

So, I do not use in its full force. What I need is that every non empty linearly ordered set has

a non empty well ordered subset which is (4) So, this is what I am going to use. To prove this

one, you will need (1) To prove (4), you will need (3) also etc. So you better read on your

own all the four . 
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So, let us go back to Michael’s theorem. As I told you to prove the equivalence of (i) and (ii),

we have only to prove (ii) implies (i). (i) implies (ii) has been taken care by the previous

theorem. 

So, start  with a topological space  , which is not  locally compact.  We shall  construct  a

quotient map  from  to  such that identity of  cross , (or  cross identify, it does not

matter) is not a quotient map. 

Suppose   is not locally  compact means that local compact fails  at  some point   in  .

What does that mean? There is a family  (this  is nothing but just an indexing

set) such that  form a fundamental neighbourhood system of closed neighbourhoods at

 such that none of  is compact. So this is the meaning of that  is not locally compact at

.

Each   is not compact, what does that mean? Now, I am using this exercise 10.9(4). For

each  ,  we  have  family   of  non  empty  closed  subsets  of   linearly  ordered  by

inclusion of sets, such that intersection of all ,  belong to  is empty. Since it is linearly

ordered, I do not have to mention finite intersection property, which is automatic, because I

have said that   consists of non empty closed subsets. Linearly ordered by inclusion such

that intersection is empty. 

So, this is stronger than saying that there is some family with finite intersection property such

that intersection of all members is empty.  So, this is where we have used  of , 10.9(4). 

Now for the sake of convenience of writing down the further proof, we index these families

 as follows:  and shift the linear order on  to the indexing set  by

the rule: , if and only if  contains  (reverse inclusion order). 

So, you may say that each  is a family of decreasing non empty closed sets. I cannot say

decreasing sequence because this may not be countable. 's may be countable, they may be

finite, but we do not know, they need not be countable. That is all. 

From 10.9(2) about linear orders, we get a subset  of  which is well ordered and cofinal

subset of . Given any member  of , there will be some  in  which is bigger than  with

respect to the order in . That is meaning of cofinal family. So, these two things right now, I

have used for the exercise. From now onwards, we are just using ordinary constructions here,

quotient space and so on. 
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So, we add one extra point to each . You can call that extra point   or something else.

But I will call it   itself. This is a very convenient notation, take   equal to   disjoint

union singleton .

Just one extra element, that extra element itself is . Now, you extend the linear order on 

to entire of   by just declaring   as the maximal element. A unique maximum element

actually.  is bigger than every element in .  

Now you take the order topology on . 



Because there is a  maximal element,  this space will  be a compact Hausdorff space.  It  is

always Hausdorff space the topology coming from a well  order.  The compactness comes

because of this extra point that you have taken. (It is like a one point compactification). 

Now, put  equal to the disjoint union of all these ’s where a ranges over . Starting with

a special neighbourhood system at , which is indexed by , we have now come to the space

 which is a disjoint union of all these compact spaces 's. Note that this  itself may not

be compact. It has disjoint union topology, where, on each  we have taken have the order

topology.

Having defined the space  , now I construct its quotient space   by identifying all these

extra points  to a single point:  will be related to , for all  inside . And  related to

 for all other point so . The quotient set for this equivalence relation will be denoted by 

and the class of all 's will be denoted by . Only the extra points that you have taken ,

all of them are identified together to single point,   in  . Let   from   to   denote the

quotient map.  

This quotient map has the property that over , the fibre, i.e.,  is the collection of all

, . And the inverse image of every other point is just one single point. So this is the

quotient map. That means of course, we are taking the quotient topology on . That is all. 
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We claim that   is as required quotient map, i.e., such that identity of   cross   is not a

quotient map.  

So here is a preparatory result. For each  , and for each  , put   equal to the

intersection of all   where   is less than  . So, if  this   was  , then what is  ? This

intersection will be the intersection of all ’s, where  belongs to this , and what was the

assumption? Remember, the assumption was that this intersection is empty for each .  

If I take  to be anything smaller, then what happen? Because it is a decreasing sequence ... In

any case,

(i)  first of all,  being the intersection of closed subsets each   is  a closed subset of  .

Remember these are all subsets of .  is contained inside  and  is not empty, if  is

not the whole of . 



(ii) Each  contains  here already, because  is what? Intersection of all 's where each

 contains  (reversed inclusion order), and  is non empty, every member is non empty.

So, if this  is not the last element, then this is non empty.  is the last element then of course

this is empty. So, that is all elementary observations. 

Now, we want to show that the map :=identity cross  is not a quotient map.
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What we do? We take a closed subset of the total space  which is the inverse image of some

set, that some subset below is not closed. So, that is what we have to produce. 

For each , put  equal to the union of all , where  runs over . This  is a

subset of the product space . I have not taken the last maximal element here. 

We claim that   is  closed subset  of   itself,  though it  is  a  subset of  .  In

particular, it would follow that it is closed in  also.  

See, it is easy to see that each   is a closed subset but why the union, an arbitrary

union over all the  should be closed? So, how do you prove that? Take a point  which

is not in . Want to show something is closed, show that its complement is open). 

So, start with the point  which is not in . What is the meaning of this is not in any of

these sets, is the union of these things. So, this means that the first coordinate  is not inside

. (Note that if , then  is empty and this is vacuously true.) (If  is inside  for

one of the  's then this would imply that   is in   contained in  .) But   is

what? Intersection of all , where  is less than . 

If something is not in the intersection, it means that there exist some  less than  such that 

is not in .

Let   be the right open ray inside . Remember these are all well ordered subsets, right

rays etc all make sense. 

So, once you have got some sigma here,  means what? All those 's which are bigger than

, including your  .   is  an open neighbourhood of   and also of  .  Then  



contains   because   is  not  in  ,  and   is  an  open  subset  which  contains  )  is  a

neighbourhood of  in . 

It is easily checked that  intersection this open subset is empty. What does that mean? That

this neighbourhood is contained in the complement of . So, what I have shown here is that

 belonging to   has an open neighbourhood which does not intersect   at all, open

neighbourhood. That means, this complement of  is open. Over.  

So, why this  is not empty? For this you have to use the elementary fact that each  has a

least element that is the biggest subset  which is non empty.

Then for any  in , we have  will be in . So, we have got a set here which is a

closed subset of . So, in particular this is a closed subset of  also, because it is

a subset of  to begin with.

So,   has  this  disjoint  union of  closed subsets  that  is  a  closed subset,  in  the disjoint  in

topology, there is no problem. But  is its image  as a ring over , is a same thing  of

all these disjoint unions, that is subset of . Because first coordinate, I have taken as 

here. So, we claim that  is a closed subset of , which is nothing but I just told

you disjoint union of all these sorry here, all these , which say, well, subset of  cross this

 here, not . 
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Now, take  to be the union of all  where a runs over .  is a subset of .   

The union of all   as a runs over   is a subset of  ,  which is a disjoint union of

 subset of  in the disjoint union topology. But now  is its image under , and

 is precisely this union which is a closed subset. 

All that I need to show now is that  is not closed in . 

For this we want to first check that  is not in . That follows because  is the

set of all , .  

Secondly, we claim that  is in the closure of . Something is in the closure and not

inside , just means that it is not a closed set, that is all. 



So, for this start with a neighbourhood  of , where  is open in  and  is open

in . I want to show that  intersects . Let  be such that  is contained in . So,

what I am using here? That this family  form a neighbourhood system at . 

So, if   is a neighbourhood of , there will be some a such that  is contained inside .

These are a system of closed neighbourhood none of them is compact). That is how we have

chosen. 

Note that this  is in , the top elements are mapped onto  by  and  is in .

So,   will  have  this  .  Therefore   is  a  neighbourhood  of   in  the

topology of  .  And hence,  there  exists lambda in   such  that   is  contained in  this

neighbourhood. None of the open right rays   is empty because   itself has no maximal

elements (that would have meant that intersection of all members of  is non empty). That

means for some  , we have   belongs to  . It  follows that  ,  (come

down to   under the quotient map,) is contained inside  . See this   just

identifies all these , with , and when  are smaller it is keeping them the same elements

here, there is the identity map. So, that will be inside  . Which completes the

proof.  
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So, I will just make this remark: We kept the statement of the theorem as simple as possible

unlike the original statement given in Michael’s paper. Indeed, a quotient map that we have

constructed satisfies a number of properties.  Let us say it belongs to a special class   of

quotient maps. This class   is the class of all quotient maps from   to  , where   is a

disjoint union of compact Hausdroff spaces and fibres of  are all singletons accept one fibre

which is  a discrete  closed set.  Actually this   is  our   and   is  ,  I  have deliberately

changed them because you should be able to do that on your own also. 

What we have seen is that the quotient maps are very peculiar. Only inverse image of a single

point one having too many points, for rest of the points inverse image consists only one point,

even such maps such maps can be badly behaved!  Identity cross such a map is not a quotient

map, where you take then  to be non locally compact. That is the statement that we have

actually proved. But we do not want to insist on that one. So, we can add these  also in the

theorem,   are  all  equivalent.  This  will  be  much weaker  statement  than  .  I  mean,

looking, because it is a subclass. That is all. Thank you. Next time we will do something else.


