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Hello,  welcome  to  module  52  of  NPTEL,  NOC,  an  introductory  course  on  Point  Set

Topology, Part  II.  So we shall  continue our study of function spaces.  Today the topic is

Exponential  Correspondence.  So  let  me  start  with  a  theorem  because  I  have  already

introduced all the relevant notation, I hope you have done your homework for getting familiar

with this notation. 



Start with a locally compact Hausdorff space ,  and  are any two topological spaces.

(a) The evaluation map  from  to , given by  is continuous. 

(This is the first statement of (a).) 

(b) A function   from any topological space, (there may be some other topological space

here)   to   is  continuous  if  and  only  if   from   to   is

continuous. 

(So this gives you a criterion for determining when functions into  are continuous. 

(c) If   is also locally compact and Hausdorff, (locally compact Hausdorffness is always a

standing assumption on , now if  is also locally compact and Hausdorff), then the function

from  from  to , the exponential correspondence, (the function that

we  defined  last  time,  I  am  repeating  it  here)  namely,  ,  this  is  a

homeomorphism. 

Notice that by this statement (b), given any  here,  is defined by this rule is continuous.

`if' part you do not need. So the , though it takes values actually in  in general, it is

actually inside this smaller subspace of continuous functions. That is why I can write like

this. The statement (c) is much more stronger, says that psi is actually a homeomorphism. 

So let us go through the proofs of these things carefully one by one. 

One point which you can remember is the following and how to remember. Whenever you

take continuous functions from somewhere, the domain must be locally compact Hausdorff

or locally compact regular, some local compactness has to be there. Right in the beginning

we took function from  to ; therefore, we assumed  is locally compact Hausdorff. There

was no need to assume anything on the codomain.

Similarly,  here  in  (b)  there  is  no  assumption  on  ,  the  function  is  taking  values  inside

.  So  before  taking  ,  I  would  like  to  ensure  that   is  locally  compact

Hausdorff.  So that is the case when you come here to (c) because now you have to take

 and then  so I am assuming  is also locally compact Hausdorff. 



 and  are locally compact Hausdorff, the product will be locally compact Hausdorff, so

there is no extra assumption. So still  is a free topological space, no condition on . So, it is

easy to remember where you put the hypothesis.
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So, first the proof of  (a). I want to prove that the evaluation map itself is continuous. Given

an open set   in  , we must show  is open in  . So take a point here,

 belonging to  contained in . What is the meaning of ‘it belongs

’? This implies that  is a continuous function from  to , and  is in .

Now use local compactness of , you can find a compact neighbourhood  of  in  such

that   is contained in  . (Actually you get an open set   such that   in in  ,   is

compact and contained in . I have combined all that and taken .) 

This  means  that   is  in  .  Since   is  an  open  subset  of  ,  we  get  a

neighbourhood , of  in the product topology of . 

Now clearly you take  of this neighbourhood, by the very definition of ,  is inside .

that is the meaning. So we have found out a neighbourhood of the point which is completely

taken inside  by ; that is the meaning of that  is continuous. 
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Now, let us prove (b). Now we start with an arbitrary space  and a continuous function ,

identity of   cross   is continuous,   is continuous because we have proved it in (a), so

composite is continuous. So one way is obvious. Now, what we want to do is assume that this

composite is continuous. Then you have to prove that this  is continuous.) See composite of

two functions can be continuous without either of them being continuous. You must know

such examples. If both   and   are continuous then the composite is continuous, that is a

standard result that we have proved, but it is possible to have neither of them continuous but

the composite  is  continuous.) Here we have to prove this nontrivial  result,  assuming this

composite is continuous, you have to prove that  is continuous. 

For this it is enough to show that  inverse of these subbasic open sets in  are open.

So this is standard method we have been following. We should have proven that inverse

image of every open set is open, you can just take only subbasic open sets. What are the

subbasic open sets here?  compact   open, then you take . So start with a point  

belonging to  such that  is in . So  is a continous function, remember that

now. Because  is a function of  to .
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Then for every point  , look at this composition,   composite identity of   cross  

operating upon   is nothing but   the first coordinate remains  

and then evaluation. This is inside . So, by continuity of  composite identity of  cross ,

that is the hypothesis now, there exists a neighbourhood,  inside  of this pair

 such that  composite identity of  cross , operating on this product neighbourhood

goes inside . As  varies over , we get an open cover  for  and since  is compact,

we can pass on to a finite subcover of , say  contained in the union of , for  to .

I will call this union . What we have done? For each  we have got a neighbourhood

, of , so these  is an open cover the whole of  which is compact. Therefore, I got a

finite subcover here, which I am denoting by . On the other hand I take 

to  be  intersection  of  the  corresponding  's.  Then   (this  product  of  union  and

intersection) that will be contained inside the union of  where  ranges from  to .

Any point   belongs  to  the  LHS means   is  in  some   but   is  in   for  all  .

Therefore,  is in  and hence it is in the union. 

Therefore, if you apply  composite identity of  cross  on this one, that will be inside 

now, because the same is true for each set on the RHS. This in turn implies that   is

contained in . But  is contained inside , because  is contained inside ,

and   is larger. Anything which brings the entire of   inside  must be also bringing 

inside . 

Since  is a neighborhood of  we are done. We have found out a neighborhood  of , so

that  is inside this sub-basic open set, that is what we have started with. 



So we have to go through these steps to prove the converse part here. Namely, just assuming

that this composite is continuous, we proved that  is continuous, so that is part (b). 
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Now we will do the last part (c), namely, exponential correspondence  is a homeomorphism.

As pointed out before, first of all, because of (b)  is well defined. I repeat this is what I told

you right in the statement here, because of (b) this makes sense, that this is function from

here to here. Otherwise, I am not at liberty in choosing the definition of .  has to be defined

like this at the set theoretic level itself. I have to only verify that the codomain is correct

when  is continuous.

So that is the first remark again. This is repeated here that is all. So  is well defined. 



I will have two more evaluation maps here, remember this  was from  to  .

Similarly,  I  have  this   from   to   and   from

 to . So each time, in the domain we have product of a space with

the space of continuous functions form the same space into another space. And the codomain

is always that other space. That is the pattern for domains and codomains of evaluation maps.

So we have to deal with three such evaluation maps. Because we are assuming that  locally

compact and Hausdorff,  the statement (a)  is  valid for all  of them. That means that these

evaluation maps are continuous. Now we apply (b)  by taking  in place of  

and   in  place  of  ,  for  the  continuity  of  .  What  is  the  domain  of  ?  It  is

. What is the codomain? It is . So that is why I am taking 

in  place  of  .  So,  continuity  of   is  the same thing as  continuity  of  this   composite

((identity of  cross ) cross ).  

If I prove that this composite is continuous, then  will be continuous. (It is possible to prove

continuity  of   directly  by  elementary  methods,  but  I  find  hat  will  have  cumbersome

notation. So I find this way is easier to state and observe, once you have done the ground

work here, namely (b), you can keep using (b) again and again.)

So I will show you   composite, with identity of   cross   cross  , is continuous. The

domain is  and the codomain is .   

From   we  have  the  identity  to  ,  and  from   we  have   to

.  So  given   and  lambda  in  ,   is  precisely

equal to . We can rewrite this as a composite two different maps, viz., identity of

 from  to , first followed by the evaluation map .

See under the first map, , this  remains as it is,  is the evaluation map operatiing

on  and so that becomes , which is an element of . Then you apply again the

evaluation map  here on . This  is from  to , that is what we have

started with. So that gives you .

But now these two are continuous, therefore, this composite is continuous. So that establishes

that  is continuous. 
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Exactly similarly, you can show that , namely,  is continuous. In fact, we want to show

that  is a homeomorphism, same thing as  is a homeomorphism. Note that as a set function,

we have seen that this  is a bijection and its inverse is . Therefore, we have no other choice

on the subspaces also they are inverses of each other. On each smaller subset the inverse will

be corresponding restrictions; that is all. So I have to take the same , and show that this is

continuous now. Then it will prove automatically that both  and  are homeomorphisms. So

let us prove that  is also continuous. So proof is even simpler here, but anyway you have to

go through these steps. 

Namely, given any continuous function  from  to , we know that for each  in  the

partial functions  , namely, you are fixing one coordinate   and taking  going to  .



Those  things  are  continuous  that  you  know  already.  Joint  continuity  implies  partial

continuity. Therefore, we get a function  viz., .

This function itself is continuous. Why? Now you apply (b). So you have to see that   to

 continuous, you have to take  to that evaluation map composite with identity

cross this one. So if you apply that it will follow that  is continuous, because finally, what

you get is , when you evaluate . 

This  means  that,  first  of  all,  that  under  this  ,   goes  inside  .

Because it  goes to   and   is a continuous function from   to  . So this is just a

justification that   has the correct domain and codomain. Now we have to show that   is

continuous. That part is still there. 
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From (b), the continuity of   is the same thing as continuity of   composite identity of  

cross . So what is that function? That is  going to . Again by (b) this latter function

is continuous because when you evaluate it on , we get  going to  and this is

continuous. Because  is continuous, this is an evaluation map from  to whatever,  of

, . All right! 

(Refer Slide Time: 22:04) 



So  we  have  established  exponential  correspondence  in  a  very  strong  sense,  viz.,

Homeomorphism types of  and , if you interpret them as corresponding subset

of continuous functions. You can remember this easily. The condition is that whatever space

is taken as an exponent must be locally compact and Hausdorff.

Here is a remark. Note that in (b), we do not need the local compactness of  to prove the

continuity  of   from   to  .  This  is  only  needed  in  the  proof  of  (a),  the  local

compactness of  is needed in the other way round implication only, because it is needed in

(a), if you want to apply other way round, then you have to use (a). Also, the proof of (a) is

the same if we assume  is locally compact and regular, (instead of Hausdorffness), which is

slightly more general than assuming locally compact Hausdorff. 

Because we have seen that locally compact and Hausdorff implies regularity, but the other

way may not be true. So we can also do these result with locally compact regularity. All that I

have  used  here  is  that  points  of   have  arbitrary  small  neighbourhoods  with  compact

closures, i.e., The set of compact neighborhoods of a point forming a fundamental system at

each point. 
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So now, we shall do one more justification for introducing this compact open topology. All

right.  Let   be a  metric  space.  We say a sequence   from   to   is  compactly

convergent or uniformly convergent on each compact subsets of , (this is a longer wording,

whereas the first one is a neat wording, both are used commonly) to a function  , if what

happens, I mean, when is this happening namely, if for every  positive and a compact subset

, there exists  such that distance between  and  is less than  for every  inside

 and for every  bigger than . If this happens for each  and then this  depending upon

, that will be just point-wise convergence. So if the same  works for all the points of  that

is uniformly on .  is compact that is why it is called compactly convergent. So this is not

my definition. This is the standard definition. I am just recalling it. 
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Now we come to something, let  be a metric space,  be any locally compact Hausdorff or

a locally compact regular space. One of them. A sequence   from   to   of continuous

functions is compactly convergent to a continuous function  from  to  if and only if as a

sequence in , i.e., with the compact open topology, it converges to .

Here  the hypothesis is  that  the sequence  is  of  continuous functions  and the limit  is  also

continuous. Then compactly convergence implies the usual convergence in this topology, that

is  what  the  final  conclusion  here.  We  are  not  proving  that  that  the  limit  function   is

continuous. Indeed that is true, you know already in the case of metric spaces.

If it is compactly convergent sequence of continuous function, then  is continuous. But we

are not proving that statement for compact open topology. There we are assuming this one.

The statement is that, namely,  converges to , each  is continuous,  is continuous, the

convergence can be in the general sense of metric spaces. Here you can say that it is in terms

of compact open topology, that is the whole idea. The statement is clear, I hope. 
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Now let us work it out. It takes a little bit of time, but this is routine. There is absolutely no

new ideas here. All these things are standard methods in analysis. Suppose  is compactly

convergent to . Let  belong to , where  is an open subset of  in compact open

topology. We have to show that, there is some  such that  belongs to  for all  bigger

than . So this will prove that  converges to  in the compact open topology. 

So one way implication will be done first. Let   for   to   be such that  's are

compact  and  's  are  open and   is  in  the  intersection of  ,  the intersection itself

contained in . This is because these things make a subbase. So, whenever you have an open

subset and a point in it, you can always get a member of the base as above, viz., intersection

of finitely many members of the subbase.  

Now for  any  ,  any subset  of  this metric space   and   positive,  we have the standard

notation, long back we have used this one, viz.,  is the set of all  inside  such that the

distance between  and  is less than . It is just the union of all open balls of radius  with

center in . 

 Now if  is a continuous function and 's are compact, 's are compact and contained

in   where each   is  open.  Therefore,  you can  find an   positive  such that  this  open

neighborhood   is  contained inside  . All that you have to do is take   to be

distance between , which is compact and complement of , which is closed. So if you

have done it for all  to , you can take this  to the minimum of them. Once you have an

 you get an integer , such that for all  bigger than , we have distance between  and



 is less than  for every  for all . This is the compact convergence of the sequence

 to . 

For each , which is compact I will get an  here. But what is the meaning of this one? This

means that, you see,  is in  and so  will be inside  and  is same , so if you take

the  neighborhood of this , this  of the entire  must be inside here. That is true for

all .

 Now, if you take  to be the maximum of these , then all of them will be simultaneously

true.  Therefore,   will  be contained inside   for  all  ,  which just  means that   is

intersection of these , but that is inside . So one way we have proved.  
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The  converse,  converse  is  more  or  less  similar,  but  slightly  different,  now we will  see.

Suppose  converges to  in . Given  a compact subset  of , and  positive, by

continuity of   and local compactness of  , (I have to use this one somehow) for each  

belonging to , choose neighborhood  of  such that  is compact and  is contained

inside some neighborhood of , I will choose . 

So that is the  is an after thought, you know this kind of thing. If I have chosen the  balls,

finally, I will get  balls. That is why I just start in the beginning itself , that is all.) 

So far we have used only local compactness and continuity of  (the sequence  has not

entered yet).  



Now, choose finitely many points  belonging to  such that  is contained in

the union of }'s for .  

For each  inside , I have got a neighbourhood , with a certain property. They form an

open cover for the compact set . So I get a finite cover. This is again a routine thing. 

Now  converges to  in  implies that for each of these , there exists  such that 

will be inside this open subset . This is an open subset in the compact open

topology and  belongs to it.  

Again take  to be maximum of . Then if  is bigger than  and  is inside , I

am going to verify this uniform convergence part, viz., distance between  and   is

less than or equal to  plus… first keep n the same, change  to , next from

 to  and finally from  to , each term contributing at most  and hence

the total is less than . So there are three quantities here. 

If you choose  such that  is inside , then each of these quantities on the right hand side

will be less than , because I have chosen  here. If they happens to be , you have to put

everywhere , that is all. So they are , so hence, we are through, some total is, I mean, this

distance is less than . 
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So I made a remark saying that if you have a sequence, which is convergent, in   a

sequence of this one, which is suppose compactly convergent. So that will  be a function,



some function, would that be already continuous. See, I said I am not proving or I am not

addressing this problem in this theorem, but that problem binds me, it can bother me and it

does. As a function it is some function from  to . 

So this question is the same as the following. Under the compact open topology, on  itself,

is the subset  closed in ? This is the question. 

A completely satisfactory answer will take us to yet another concept,  which we have not

introduced  here.  Now  that  concept  has  the  name,  `uniformities',  which  we  have  not

introduced so far. So we shall skip it. There is no time for doing uniformities in this course. If

you are interested, then we you can look into many books, special book for me is Kelly's

book.  Thank  you.  So  next  time  we  shall  use  this  compact  open  topology  to  do  some

interesting applications. Thank you.


