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Welcome to NPTEL-NOC an introductory course on Point Set Topology Part 2. So, today we

shall begin chapter 11 a short chapter on Compact Open Topology. Here we will discuss the

question of topologizing a family of functions from one set to another set but with some

specific topologies on both sides. 

For example, we have discussed the Banach space, the Banach algebra of all real or complex

functions from one set to another set which are bounded and then one of its subspace, where

 is some topological space, you take just continuous functions and bounded functions. 

Later on, we will  study some specific  properties  of the spaces  such as Stone-Weierstrass

theorem,  Ascoli's  theorem  and  so  on.  So,  function  spaces  have  a  lot  of  importance  in

mathematics after all. 
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Arguably, we may just begin with the set . This notation is just for the set of all functions

from  to . It also is equivalent to another description, namely, product of copies of  as

many as there are elements of . You can think of each copy of  indexed by  where ’s

runs over   and then take the product. So, that is the same thing as the set of all theoretic

functions from  to . Usually it is taken with the product topology. But, that will involve

only the topology on . Product topology has nothing to do with the indexing set , but we

want to bring the topology of  also in the picture. So, let us restrict ourselves to subsets of

all continuous functions from  to .  So, that is clearly a subset of set of all functions from

 to , .
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Now, the central  problem here is  to approximate a  given continuous function with some

special  properties  maybe  or  totally  arbitrary  continuous  function  by  some  subclass  of

functions such as polynomial functions. So, that is Stone-Weierstrass theorem or may say just

Weierstrass theorem in the case of functions defined on the closed interval or something like

that or it could be smooth functions or it could be embeddings and various things, or you may

want to approximate by just what are called piecewise linear functions and so on. 

So, what is the meaning of approximation? Approximations of functions is nothing but the

study of convergence properties in the ambient space, namely, the space of all continuous

function from  to . Of course, this will demand that we have topologies on  and , so

that continuous functions make sense. Another way would be just take the product topology

on  and restrict it to subspaces that you can take the product topology and restrict it. 

Of course, that will not involve the topology of  itself only the choice of subset you have

got this one. What about other subsets, what are the open sets? There also we want to involve

the topology of  in some way or the other. That is what we want to concentrate upon. 
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So, we need to examine even the simplest answer provided by taking the product topology on

, because   is after all a subset of  . The subspace topology has some decent

properties but for example what happens if you have a sequence  of continuous functions

from  to , which converges to a function from  to  in the product topology? That just



means that each coordinate sequence  converges to . This is known as pointwise

convergence in analysis. 

We have seen that point wise convergence of continuous functions need not imply that the

limit is continuous. So, we will be going out of the subspace  , which we may not

accept. With this particular point of view, the product topology is not quite satisfactory. 
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Before we carry on with this discussion, let us have some notation, so that we can discuss it

more  carefully.  Note  that  there  is  a  canonical  function,  which  we  will  denote  by  ,  

representing the evaluation map from  to ; take a point  here and take a function 

from  to , you evaluate that function at this point, that is . 

Next,  we can define a little more complicated function here.  By the way, this is  just  the

exponential law as far as sets are considered. I am just taking the set of all functions here, all

functions from a set  to the set of all functions from  to . So, this is , whole power . 

So, I am going to define a function on this,  namely, take a function  from  to ,  take the

identity map of  and take the product of these two and then follow it by the evaluation map

 to get a function from   to  . So you get a map from   to  . That is

denoted by , then you can compose it with . So, that composition we will denote by . 

This map is called the exponential correspondence.  It is  easy to see that it  is a bijection.

Namely, whenever you have a function   from  to  , you can restrict it to 



they are called sections of , and are denoted by  from  to , viz., . So, for

each  is a function from  to . Thus we get a function  from  to . You can

easily check that  is the inverse of . 

So, if you denote cardinality of a set  by , then this bijection says that  is equal to .
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Now, when we take product topology everywhere, viz., starting with some topological spaces

 and  , and take product topology everywhere, on  , on  , on  

etc., we can ask whether  and  preserve continuous functions.



They may not, one way or the other way. We cannot ensure that. So, even for this reason,

product topology is not satisfactory. 
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So, we have look for better answers. We are also familiar with a partial answer in the case

when you have to  deal  with real  or complex valued functions on a topological  space  .

Usually   itself  was  also  a  compact  metric  space  and then automatically  all  continuous

functions are bounded. This way they formed a Banach algebra on which we have studied

many other results also. 

Now, we do not want to restrict  to be a metric space. That is all let alone a compact one.

Namely, take any topological space  there is one concept which will imitate the sup norm

topology, i.e., which is the same as the topology of uniform convergence. This will imitate, to

a large extent, a very good imitation. And that is called the compact-open- topology. 

(Refer Slide Time: 12:55)



So, that much for motivation for today's topic. Let us start the study Module 51. The earnest

study of compact-open topology. There are many other topologies on function spaces. The

study  of  various  topologies  itself  is  a  very  interesting  and  thriving  business  in  function

analysis. Here are some more notation here. 

For any subset  of  and  of , let us denote this square bracket  to be the set of all

functions from  to  such that  is contained inside . 

So,  this is  where  we are  imposing some restrictions  on functions  we take.  The function

should take our given  inside  to be inside this subset.  



Another notation, namely these angled brackets (looking somewhat like inner product, but

nothing to do with that concept). So, I will call this also  is all those .

Condition is the same, but only take continuous functions that is it.  

Now, given  and  consider family  to be the set of all subsets  , where  ranges

over all compact subsets of  and  ranges over all open subsets of . Now, both  and 

are topological spaces, of course.  equal to all ,  is compact and  is open. So, that

is suggestive. That is why I put  here in a subset of  and subsets of  are taken .  is

compact.   is open. The symbol represent the same things only now qualification is that 

must be compact and  must be open. 

Take this collection . Declare it as a subbase for a topology on . Let us denote it by ,

and call it the compact-open-topology. Remember this square brackets denote the set of all

functions such that... So,  will be perhaps different from the product topology, let us see.

Finally, we take the subspace topology on the subset  and denote it also by .
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From now onward,  we should take the induced topology on  from the compact open

topology unless specified otherwise. There are so many different topologies on  but

right now we are going to take compact-open-topology only. 

Clearly, the family of subsets  as  ranges over all compact sets of  and  ranges

over all open subsets of   forms a subbase for   on  . Family of subsets got by



intersecting with a give subset the members of a subbase for the larger space will form a

subbase for the subspace topology on the subset. This is a general fact.  
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Note that the collection of all  , (now I am specifying   instead of   in the first slot,

justified because singletons are compact) forms the standard subbase for the product topology

on . What is ? All functions whose  coordinate is inside  which is the same as

 where  from  to  is the  coordinate projection. 

Therefore, you see that at least the definition this compact-open-topology is some kind of a

generalization  of  the  product  topology.  Clearly,   is  finer  than  the  product  topology,

because subbase for   contains the standard subbase for the product topology. Therefore

every open set in the product topology is also open in . 

Therefore,  convergence become more stringent. For example, immediately you can see that

convergence with respect to this compact open topology immediately implies convergence

with respect to the product topology, which is nothing but pointwise convergence.  

So,  what  is  the  meaning  of  this  one?  ?  control  only  at  points,  whereas   are

controlling over compact subsets. Functions have been controlled over the compact subsets. It

is control over the functions not over the compact sets.
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So, here is a theorem. The  this topology is finer than the product topology on . It

is Hausdorff (respectively regular) if  is Hausdorff (respectively regular). So, these two are

more or less consequences of the first observation which we have already seen. 

The topology is   is finer than the product topology because it contains the subbase itself

contains all the subbase for the product topology. As soon as it is finer than a Hausdorff

topology,  it  will  be  also  Hausdorff.  If   is  Hausdorff,  the  product  topology  on   is

Hausdorff. That is old game for us. Therefore, it is Hausdorff. Regularity is not that quick. 
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So, let us see why regularity is also true. So, assume  is regular. It suffices to consider  

belonging to . (These are subbasic open sets. Instead of doing it for all open sets, you

can just do it for some subbasic open sets and then you can take finite intersections then that

will give you the proof for all open sets.) 

Now,  belongs to  implies   is contained inside . Since  is compact  is

compact.  So,  if  you  have  a  compact  subset  of  an open  set  inside  a  regular  space  what

happens? This is all an old game for us, we know that. 
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By regularity there is an open subset  of  such that  is contained inside  contained

inside  contained inside . Clearly  belongs to this  now. But  is contained in

 being larger than  and that is contained in . 

Now  is nothing but intersection of all  where  ranges over . 

Remember  means all (continuous) functions which take the point  inside . If all the

points given a function if all the points of  are inside ,  is inside  and conversely.

So,  this  is  the  intersection  of  all  these  .  Now,  what  are  ?  They  are

 and hence are closed subsets of  ,  in the product topology and

therefore in  also. 

 So,  is a closed subset of . These is the closed subset. So, what we have found

for each  inside this open set contained in its closure contained in the given open set. So, that

is the regularity for the  topology. Over.
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From now onwards, we shall use the notation   or the ordinary square bracket  

only when  is compact and  is open. This is just a lazy way of saying but sometimes I may

forget it that is why. We do not write this kind of notation unless  is compact and  is open.
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So,  let  us  take  a  break  here.  Next  time  we  shall  study  carefully  the  exponential

correspondence which we have introduced today for only sets. Now we will study them for

continuous functions with  topology. Thank you. 


