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Hello. Welcome to module 50, the NPTEL-NOC course an introductory course on Points Set

Topology  Part  2.  So,  continuing  with  the  study  of  ordinals.  We  will  now  construct  an

example  which is  called  long line.  This  long line  is  an example  usually  in  the study of

manifolds that we are going to do in the last chapter, here, in this course. The word `line'  is

used for any topological space which is homeomorphic to, let us say, the whole of the real

line or to an open interval. 

However,  the long line is going to be something which is only locally homeomorphic to

open intervals. That means that every point has a neighborhood which is homeomorphic to an

open interval. But the entire space is not homeomorphic to an open interval. First of all, that

is not the whole point here. We will see that this space is non compact, it is not even second

countable that the whole idea. Of course, it is Hausdorff space. So, II-countability axiom is

violated here. That is why this is an important example. Let us see now the details. 

Once  again,  now,  we  have  to  deal  with  both  the  real  line  as  well  as  the  ordinals

simultaneously  and  the  notation  for   will  become  a  conflicting  point.  So,  reserving  the



notation  for the ordinary  of the real numbers, the  of the ordinals namely, the smallest

ordinal will now be denoted by . So, that is the first remark I have to make. Sure. 

Also, again we have ordered pairs of elements just like in the previous example of Tychonoff

plank. So, we will continue to use this notation  for element of the product set 

so that there is no confusion with intervals  . So, this notation   will continue. In

addition,  we  will  have  this   will  denote  the  least  element  in  the  ordinals.  That  is  the

difference. 
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So, I start with again, just like in the Tychonoff plank example, start with the product set

. So, both are half open intervals,  but there is a difference.  Do not get

confused. We are not taking both of them as subspaces of ordinals. Here the second factor is

the interval in the usual real numbers. The half open interval [0 ,1). Both factors are linearly

ordered. Whenever you have a product of two posets, we can take the lexicographic ordering

on it.  

Namely, I will denote elements of this by symbols such as  . Another element   cross,

(let us say,  and  are ordinals,  and  are real numbers between 0 and ), is said to follow

the first one if and only if  is less than  in the ordinals or if  is equal to , then  must be

less than equal to . 

That is the lexicographic ordering. Since words are arranged with this rule in any dictionary,

that is why this rule itself is called lexicographic ordering or a dictionary ordering. So clearly,



this is a total order on . Because if you have two elements here, first you can compare the

first coordinates  and y. If  is less than , well and good, we have  is precedes .

Or it  may be other way round. However if   then compare   and   etc.  No problem

because  both of  them are total  order.  (Indeed lexicographic  order  on the product of  two

totally ordered sets is totally ordered.)

The first one has  as the least element so we call it a ray. 

Then you remove , the initial point here, throw away that point, that is called a long line.

It is just like half closed interval  is a ray and  being called a line. This is just a

terminology right now. Not a big deal here. You could have interchanged the definition if you

like. But that is not good. Because this is a ray. You can think of this also as ray of course,

but this is called long line. Wait for more justiifcation.)

Now, I will define one more thing here, without much effort. I take two disjoint copies of ,

let  us  call  them   and  .  Take  the  quotient  space,  of  the  disjoint  union  obtained  by

identifying the two least elements,  and . Because I have taken two copies of

, I have these two copies of the least elements as well, so identify them. 

We shall call the quotient space the longest line and denote it by . It is just like two copies

of the ray  and getting the entire real line by identifying the two 's. I will justify this

name also later along with the other names we have used. You will see that there is no `line'

bigger than this. 
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We shall implicitly identify the ordinal space  with the this coordinate subspace  of ,

namely,  ,  the  subspace  of  all  points  second  coordinate  being   of  the  real

numbers. So, I will not use the cumbersome notation every time something cross  to denote

elements of this subspace. I do not have to write. 

So, I am identifying this   with this subspace under the identification   goes to  .

Just to save ourselves a little bit of time and cumbersome notation, that is all. 

Terms  such  as  intervals,  initial  segments  etc  will  be  with  respect  to  this  new  order

lexiographic order, on the product space . 

For example, now,  will denote all the elements  inside  such that . This will be the

closed left ray. Similarly closed right ray is defined. 
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So, here is a caution. Though we have used the Cartesian product notation for the underlying

set  , the topology on it is not the product topology. The topology is defined by using the

lexicographic order that is my  . It  is tempting to describe the long line as obtained by

taking  disjoint  union  of  closed  intervals  indexed  over   that  is  the  ordinals,  and

identifying the endpoint  with , the starting point of the next interval.

This is alright, because in the lexicographic order the larger set , what is the next

element to ? It is . Note that  itself is not an element of . First of all,

note that  is not an element of . That is why we have to work inside . 

So, you identify them so that the extra points x cross 1 will all disappear. Duplication will not

be there.  So, you can think of   as this point  . So, that is another way of

defining the long line. Many people especially when they give popular lectures on this topic,

follow this practice. That is what I want to tell you. 

However, strictly speaking, it is a wrong explanation, wrong presentation of the long line.  
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So, it is not a good way to explain it that way because that picture is good only in the initial

stage namely , so on up to . As soon as you arrive at a limit ordinal, say little omega,

the picture  will  be  a  complete  failure.  So,  there you  have  to  strictly  follow this  rule  of

lexicographic order. Therefore better define it the way we have done. Take the lexicographic

order on  and take the induced order topology.  
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(a)  So,  note  that  for  any   belonging  to  ,  the  closed  interval   in  ,  is  order

preserving homeomorphic to the closed interval . For each  in  the open interval

 is a nothing the subspace  and hence homeomorphic to . The

next point will be precisely   in  . So, when you add the two end points   and

, it  is  homeomorphic to the closed interval  .  So, this propery  is  the one which

prompts the above wrong explanation. But if you use that to decribe globally the whole of ,

you will get the wrong picture. So, that picture will be good only in part not full picture. 

(b) Second point is that there is this fundamental property of  that we are interested in, from

which many other properties follow: 

(A) For each  inside  (that is  for some  in ) not equal to , the closed left

ray  in , is order preserving homeomorphic to interval . 

Once you have this (A), you can have this (A)’ which is an immediate consequence of (A)

this can be immediate derive from (A).

(A)' For each   in  , not equal to  , the closed ray   is homeomorphic to again the

closed interval  . By the way, it is enough to say that something is homeomorphic to a

closed interval (other that a singleton), because all of them are homeomorphic to each other.

This we have seen several times. 

How to see (A')? This   is nothing but  union this vertical line segment ,

where , where  is in  and  in . We have to go up to . So, from (A) this



is already homeomorphic to closed interval , and  is nothing but 

and hence homeomorphic , the usual interval in the real line. The common point is .

We can put them together you will get a homeomorphism onto  instead of . And

then you can rescale it, to get homeomorphism from  to . 
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So, as a consequence of (A)’, it follows that this  is path connected and hence connected.  

Not only that  is locally homeomorphic to an open interval in , except at the point  at

which we have neighbourhood system consisting of open sets which are homeomorphic to

half-closed intervals. The latter claim is obvious. To see the former, all that you have to do is

to  take  some point   which  follows   and  then   is  inside   which  contains  a  subset

homeomorphic to an open interval and which contains .  
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So, let us prove property A. We have not yet proved it. I have indicated a proof already but

let us prove this rigorously.  

Suppose the property (A) is not true for some  in . Let  in  be the least element

for which (A) is not true. If you take the set of all points such that this (A) property is not true

that is a non-empty set is the assumption. So, this non-empty set will have a least element.

So, let  be the least element of all such elements. 

If  equal to some  for some  that means  is a successor for some . Then we

will have  is homeomorphic to  (or a singleton when ).  

because  then   is  less  than   and  hence  (A)  holds  or  .  In  any  case,  the  interval

 homoemorphic to  and hence we can patch these two homeomorphism

to get a homeomophism of  with . That will be contradiction. 

Next consider the case, when   is not a successor, viz.,   is a limit ordinal. so, that is the

harder  case,  what happens? What  does it  mean? We have seen that  there exist  a  strictly

monotonically increasing sequence in  which converges to . How to use this to prove

(A) in this case.  
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So, we may assume by adding one more point to the sequence in necessary that the sequence

starts at . From (A), which is applicable to all the points , there is an order

preserving homeomorphism  from  to , because  is less than . That is why this

is possible. 

Now, put , for each . So, I am defined this  which is an element in the

open interval  . Choose an order preserving homeomorphisms,   from  to  

and  for  ,   from   to   where   and

.

You can choose these  to be affine linear. You can always rescale any two closed intervals.

Choose all of them to be order preserving homeomorphisms.



Now define  from  to  by patching up all these  and 's. Namely, I will define 

to be  for  between  and . All points of  lie between 

and , starting from . 

On the endpoints of these intervals you get two different definitions, but they coincide. So,

the  function   is  well  defined.  You  can  easily  see  now,  that   is  an  order  preserving

continuous bijection onto  . Image of any of   is never equal to  , the point   is not

covered. 

So,  you  to  take  .  Then  it  is  easily  verified  that   from   to   is  an order

preserving homeomorphism. The whole point is that the sequence  will tend to 

as   tends to infinity. So that is why, if you define  , continuity of   at the point  

comes.  A  continuous  bijection  from  a  compact  space  to  a  Hausdorff  space  is  a

homeomorphism.

Therefore, (A) is true. I recall I took two different cases namely, this  is a limit ordinal and

not a limit ordinal . So, there are two cases. We have proved the statement (A). So, from (A)

the rest of the topological aspects will follow. 
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Notice  that  the  argument  we have  used  above  is  nothing but  the  principle  of  transfinite

induction though we have put it in the language of proof by contradiction. We could have

easily put it as follows. Property A is true for  that is easy to verify. Suppose it is true for



all  less than  then the construction of  as above shows that is true for . That step is of

course you have do. 
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Assuming  that it  is true for all x less than y, then we have proved for . So, that is true for all

, by PTI.

(Refer Slide Time: 28:21)



So, here we have used a different language. So, we have got, of course is not true and then

take a least  upper  one.  In other words,  what  have used, we have used the well  ordering

principle anyway. So, we do not have to go to the principle of transfinite induction here that

is all. 

(Refer Slide Time: 28:48)

So, this  is clearly Hausdorff, there is nothing to prove here, because every order topology is

Hausdorff.  is not II-countable. (See the point to which we have come now.) Because it has

uncountably many mutually disjoint open sets, , the vertical open segments, they

are all open intervals in . They are all disjoint with each other and how many of them are

there? As  ranges over  there will be uncountably many. In a topological space if you



have uncountably many disjoint non-empty open sets, inside each of them select a point, that

will give you an uncountable discrete set. That is not possible. So, II-countability is violated. 

If we extend  by one more line segment, note that on , we do not have a line, you put one

more line there,  i.e.,  start with  the set  .  Then it  is not  even path connected.

Infact, there is no need to put a whole line. You just include , take  to be the union of

 and { }. Then take the same lexicographic ordering and the corresponding topology

that is all. Then this larger space than  not path connected. 
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If we extend  by one more line you see on , we do not have a line you put one more line

here. Then it is not path connected. Namely, there is no need to put one more line. You just

allow  this . Take  to be this  union this , one more point. Then the same

lexicographic ordering and all that. Then this will be a larger space than  and that is not path

connected. 

So, that is what I am going to prove now. Namely, there is no path from  to . We

know it  inside  .  Because  there  are  too  many discrete  points  here.  But  now we  are

working inside . and claiming there is no path. That is not so obvious. 

So, suppose you have a path, path means what, a continuous function from a closed interval

say  to  joining  to . 



Note that every point in  other than least element and the greatest element are cut points. If

you have a path from one point  to another point  and there is a cut point which separated 

and , then the path must go through that cut point. Just like the Intermediate Value Theorem.

So, we are using Intermediate Value Theorem here for that. 

That means what? All of these uncountably many discrete points inside  they should all

lie on this path. That is not possible. Because the image of a path is a compact set and it

cannot  contain  an  uncountable  discrete  set.  So,  I  make  it  clearer  here  by  an  alternate

argument. If  from  to  is the path with  and , then the cut

point argument shows that  is surjective.  

There are uncountably many mutually disjoint open subsets viz.  in , and so their

inverse images under  in   will give uncountably many disjoint open subsets of  

contradict the fact that  open is second countable.

Thus  is path connected, its clouser in  is the whole of  which is not path connected. We

have seen such an example before also, viz., the topologist's sine curve. That is not a great

thing, but this example also is of that type.  
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Indeed, what we observed above implies that the one point compactification of  is not path

connected. (That is the stronger conclusion than saying that closure of a path connected set

need not path connected.) 

In particular, no neighborhood of the point at infinity is homeomorphic to an open interval or

a half closed interval. I am talking about one-point compactification. In this sense, we cannot

extend  beyond the far end viz., if we add one more point here there will be a problem about

local Euclideanness. 

However,  we can extend   at  the initial  point  .  That  is  what  we have done  in  the

definition of this  .  That  is the answer.  Note that every point of   has a neighbourhood

homeomorphic to an open interval.   



For the same reason as before,  cannot be extended any further on the left hand side or on

the right hand side. So, this is completely saturated in that sense. Therefore, it is called the

longest line. 

So, note that each point of   has a neighbourhood homeomorphic to an open interval. And

that is why it deserves to be called a line. It  is the longest line because you cannot have

another longer than that one. Of course, this will be not second countable either because even

the subspace is  is not second countable. 

So, with these remarks and great results here,  this chapter comes to an end. Some of the

lessons which you have learned here,  some of  the results,  we will  use them in the  next

chapter also. This example  itself will be quoted as an illustration of the hypothesis that we

put namely, second countability in the definition of manifolds. Thank you. 


