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Hello welcome to Module 49 of NPTEL-NOC an introductory course on Point Set Topology

Part  2.  So,  we continue  our  study  of  Ordinary  Topology.  In  a  totally  ordered  set  every

sequence has a monotone subsequence. 

This is an elementary result, which goes under the name Peak Valley lemma maybe you have

not seen it. On the other hand, this is actually important for us now, so, I would like to recall

it completely. 

So, what is the meaning? You can imitate what is happening inside real numbers. For real

numbers maybe you know this result. But do not use the full properties of real numbers you

have to use only that is totally order, no addition, no subtraction, no multiplication and so, on.

That is the whole idea. That you can still prove this result just by using totally orderedness is

the  gist.  Every  sequence  has  a  monotonically  increasing  sequence  or  a  monotonically

decreasing sequence, a monotone subsequence. 
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So, fixing a sequence  consider the following two properties.

(D) given any , you will have m bigger than  such that . (  his inequality is

not to be confused with the order  of real  numbers that is  all,  so I have carefully written

inequality .

(I) the second is that given  that exist  such that , the other way round. 

If s satisfies (D) it follows that  has a decreasing subsequence. Similarly if  satisfies (I), it

will have an increasing subsequence. That is why I have named them (D) and (I), decreasing

and increasing respectively. So, now I assume that neither (D) nor (I) is true. Under this let us

see what happens to the sequence. 
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So, if possible let   be such that neither (D) nor (I) is true. Starting with  for definiteness

sake, we may assume that . Because the set is totally ordered,  or , one

of them is true. By symmetry, we assume  . Since   does not satisfy (I), that means

what? We cannot go on getting ,  and so on. Infact, we cannot go on geeting

 such that get , indefinitely. It follows that there will be some  such that

for all ,  will be smaller than . So, pick up that  what we may assume is that I

have started a sequence at  itself. Just forget about the earlier part of the sequence. Now,

what happens to ?  it has to be less than . 

 We are back in the first step, where I started with the assumption , except that the

inequality is reversed. So, repeating the above step, I get a number , such that for all

, .  
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This is what the picture here. I started with a sequence  here, keeps going up maybe 

is the next and then maybe  is the next, (not necessarily  and ) but finally I come to ,

after that, if you look at the reset of the sequence, everything is smaller than  , there is

nothing bigger than this what is the meaning of this one? This is  is peak. So, that is why I

denote it by . 

So, now the next one is definitely smaller than , because everything is smaller now. So, you

keep going down down down if you are successful then you obtain a subsequence which is is

decreasing.  You  keep  coming  down,  in  between  there  may  be  something  which  is  not

decreasing, ignore them and keep going further. Finally, you will be get stuck-up with some

 such that all further elements are larger than  . That is denoted by  , because it is a

Valley. What is the meaning of this? Everything after that is bigger than . 

 of course   is smallest  that  .  See because   has the property that it  is bigger  than

everything beyond.  

So repeat this process, whatever you have done in these two steps. Next stage you keep going

up till you come to another peak  and then keep going down till you hit another valley 

and so on.   

Keep repeating you get a subsequence   and so on an interlaced subsequence.

What is the property of  it is bigger than everything after that,  is bigger than everything

after  that  and so on therefore the sequence   is  a monotonically decreasing sequence.



(Similarly,   will be monotonically increasing sequence.) So, either of them

contradicts the assumption therefore, there must be a subsequence which is monotone. So,

that is the proof. 
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Next, I come back to the ordinal space  .  Both   and  , they are sequentially

compact. Remember what sequentially compact means: every sequence has a subsequence

which is convergent.  So, we are discussing this sequential compactness. So, this point (9)

here is done in that background. 



So, how do you prove that something is sequentially compact? Start with any sequence 

in  . First of all  it  is bounded. Every sequence is bounded that we have seen before,

right? Bounded in  itself. Also we have seen that  has a monotone subsequence, and

that is also bounded. Depending on whther this subsequence is decreasing or increasing, it

will  converge  to  the  infimum  or  the  supremum.  Therefore,  we  have  proved  that  every

sequence has a convergent subsequence. Great. (The proof for  can be got by first taking

a subsequence which takes value inside .)

So, point (9) is used only to get a monotone subsequence. These monotone subsequences, I

do not know whether it is increasing or decreasing. In both the cases, it will converge because

it is bounded. This is also standard result in analysis, namely, in  , if you have a bounded

monotone sequence it is convergent, follows from the property of the existence of least upper

bound and latest lower bound. So, we have we have more or less proved that theorem also

here in this approach because all that you to assume, all that you have to do is here is just

start with total order and assume that it has LUB property. So, and of course, this assumption

that least upper bound or greatest lower bound exists is true for this .

The next thing is a corollary:  is I-countable and  (it is actually  we have seen that)

and hence, the above result (SC) implies that, it is limit point compact (LPC) and countably

compact (CC) also. I will try to recall these things. 
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So,  let  me  go  through  these.  This  one  sequentially  compactness  implies  limit  point

compactness  under the axiom   and first  countability. The converse is  also true always.

Sequential compactness implies these two only under  and first countability. but limit point

compactness  implies  sequential  compactness  always.  These  results  what  we  have  seen.

Actually you can have a look at this picture. Remember. 
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So, this picture tells you that this one, so this is limit point compactness here is countable

compactness here plus , limit point compact plus  will imply countable compactness 

plus first countable limit point compact implies sequential compactness, from here to here

you can come back. So, you can recall, I have just recalled that one for your ready referenced.

So, let us go back here now. 
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So,  is I-countable,  is not I-countable that is what we have seen. And of course, -

ness  is  always  there  (because  it  is  ).  Hence,  the  above  result  that  it  is  sequential

compactness implies that it is limit point compact and countably compact also. 

Since it is not compact, this implies that   is not Lindelöf. Alright? Because once it is

Lindelöf and countably compact it will be compact. Remember, Lindelöf means what every

open cover has a countable subcover and countably compact means what? Every countable

has a finite sub cover. So, combining these two we get compactness. 

So one important thing we have derived is that  is not Lindelöf. 
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Next, if  and  are any two non-empty disjoint closed subsets in , then at least one of

them is countable and is closed in . So, you are slowly going towards normality here. So,

take two disjoint closed subsets of , of course, both nonempty. Start with that. At least

one of them is countable is a very strong conclusion. That is a closed set in   to begin

with and we are concluding that it is closed in . How?

Because this  may be a limit point after all. So, this says that  is not a limit point. This part

we know already because any countable subset of  is bounded inside . So, this part

we know already. So, let us see how the first conclusion works. The second part we have

already seen.  

Let  denote the closure of  in  for any subset  of , (a temporary notation, just

for in this part.  Otherwise, to tell  where we are taking the closure, I will have too many

notations here,  I do not want to have that.)  So, for any subset   of  ,   denotes the

closure in . 

 Now, look at the case wherein  is contained in , (it need not be true always, this

is one of the cases I am talking about).

Then both are bounded in  itself, because they are closed subsets of  but contained

in . Therefore, from our earlier result, which we have seen last time, both of them are

countable. Moreover,  is already  and  is , both  and  are closed subsets of  to

begin with. So, in this case, we have concluded that both  and  are countable and closed in

. 

Otherwise it means what? Now consider the other case, viz., suppose   or   contains this

element capital . By symmetry, we may assume that  is inside , by interchanging  and

 if necessary, that is all. 

Suppose, further that this  is in  also. That can also happen. Then given  inside , it

follows that  is non empty because  is inside . So we get element , such

that .  

Now, apply the same thing to  , this is a neighbourhood of , so its intersection   is

non-empty. So, you get an element  inside  such that . Repeating this process what



you  get?  You  will  get  two  sequences   and   which  are  interlaced  and  strictly

increasing,  less than  less than  less than  less than and so on. 

So, where are they going? So, we observed that two interlaced sequences they must have the

same limit . This is what we have seen earlier and that limit must be inside .  Because

no sequence in  converges to . So it follows that  is inside .  

But then  itself will be in , which  and  is also in  which you know is

. This means  is inside  and that is a contradiction because  is empty to begin

with, That they are disjoint closed subsets of  to begin with. 

Therefore, if we assume  is inside  then  is not inside . But that means  itself is closed

inside , hence  is compact. But now this compact subset  is inside . Therefore,

 is countable. This we have seen already. So, we wanted to prove one of them is countable

and we have got that. Automatically it will be closed in  also.  
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Now, we will use this one in a meaningful way, namely, to prove that  is normal. We

already know that  is compact and Hausdorff and hence normal.  Therefore, starting with

the two disjoint subsets in  , you take their closures in  . Just now what we have

shown is that these closures are themselve disjoint. Because  may belong to the closure of at

most one of them. What does that mean? You can separate them inside  by two disjoint

opens subsets, intersect these disjoint open subsets with , so, that will give you disjoint



open subsets of   each containig one of the original closed subsets.  Therefore,  ,

being already  so it is a  space. 

The next thing is the aim of all the work we have been doing these days:

 If  you take  the  product  space  ,  denote  this  by  ,  this   is  going to  be  a

wonderful example now. (Note that I am not taking . That will be compact cross

compact, will compact.) So, this  is going to give you a number of counterexamples. 

So, now, we have some notational problem here. See, we have been using the ordered pairs to

denote elements of a product space earlier and also to denote intervals in a totally ordered set.

But now we have to deal  with product  of  two totally  ordered  spaces.  So, I  will  not  use

ordered pairs to denote elements of products. I  will  restrict  it  to open intervals only and

ordered pairs will be denoted by  now. So, this is an element in , where  in 

and  in . The standard ordered pair notation would have been . So, that notation will

not be used while we are discussing this example at leat. So, with that convention, we shall

show that  is not normal this is normal, though both are  and normal and the second one is

actually compact also. 

So, that is a strong counter example. An example of product of two normal spaces which is

not nor  was promised in part I, but we did not provide any examples there. So, here is an

example, a beautiful example. 

So, let us have the standard notation:  denotes the diagonal subset  where x varies over

. But I want to remain inside  and so I take  equal to  which is a closed subset

of . For another closed subset  disjoint from , I choose .

So, last point   is not there. So,   and   are closed subsets of   obviously, they are

disjoint.

So, here in the picture,  this  is the top line segment and  is the diagonal goes all the way
close to   but that point is not taken. So, these two are disjoint closed subsets. Since

 is Hausdorff,  is closed in the product and therefore,  which is  is closed in . 

Similarly, since singleton  is closed in  , it follows that   is a closed subset of the
product. Also  is empty is clear.  

So, now we claim that there are no disjoint open subsets  and  inside , so that  is inside
 and  is inside . That will complete the proof that  is not normal. 
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So, we have to do a little bit of work here. 

Assume on the contrary. That means what we start with the assumption that two open subsets

as above and arrive at a contradiction, that the whole idea.

Assume the contrary.  For each  , look at the subspace  , the vertical subspace,

equal to . That is a subset of . 

And it is just homeomorphic to  . If   that will be a neighbourhood of the point

 inside  ,  because,   is  a  point  of   and   is  contained  in  .  Therefore,

, this punctured neighbourhood is non empty because  is not open in

. 

If you put  equal the set of all  in  such that this  is less than , (this is our familiar

old  right  open  ray),  it  follows  that  this  non  empty  set   is  actually

contained inside , because  and  are disjoint.  
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So, let me show all these things in a picture just to see that you are not completely lost.  This

is .   is the diagonal, note that   is not in  nor in .  is the

top line .  and  are open subsets  containing  and  containing  and we

are pretending that  is non empty.   

we feel some thing is going wrong when we keep coming closer and closer to . I

do not know, so that is where the mysteries lies. Finally we will get a contradiction there. 

So, fixing a point  here, I look at , the vertical line. That is my . This 

this portion is a neighbourhood of this . If you throw at this point, this is part is still

non-empty. This set is disjoint from that  whether I throw this point away or not, this will

still be empty. That is all I have been telling so far. 
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So, we can define a function here namely, take the minimum of  such that   is inside

this non-empty set  . Denote it by  as shown in the picture. So, that is the

definition of  which is a function from  to .

We  shall  now  define  a  sequence   inductively.  Start  with  any   and  put

. Inductively having defined  put .  

Now,  of this  will be some point here. So, that point will be somewhere here then you take

alpha of that will be some point here that point will be somewhere here, now  of that you

will  get  that point  will  be somewhere here,  you take   of that and so on. So, this is  the



inductive process here namely starting  belong to  my anything wherever you want to start

inductively define  equal to  and  and so on. 

So, we have obtained a sequence  which is monotonically increasing. Why? Look at this

one this.   always is bigger than   because   is inside  . So, no chance that this

 which is the minimum of all  such that  is in the complement of  inside , that

cannot be less or equal to . 

So, this is a strictly monotonically increasing sequence converging to some point in  .

Any sequences in  which is monotonic has to converge to  inside . But then the

sequence  which is the same as , where does it converge?  

 is nothing but  so it is the same sequence  except the indexing is changed. So,

both  and  converge to same point. Therefore,  converges to 

which is inside  and hence contained inside  by our choice.  

Whereas, none of the terms of this sequence is inside . Look at this point  . This

point is not in   is the claim. That is same as saying that   is not in   . And that

follows because  in the minimum of all  such that  is not in . 

So that is a contradiction.  

So, finally, why I have used this notation  for this sapce? Because this is called Tychonoff's

Plank. This example is called Tychonoff's Plank. 

In conclusion, we say normality is not finite productive. 
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As  a  corollary,  we  can  say  or  that  Tychonoff's  Plank  is  not  paracompact.  Paracompact

Hausdorff spaces or paracompact regular spaces will be normal. That is what we have seen

already. It  follows that   is  not  paracompact because paracompact  cross paracompact

would have been paracompact. Of course,   is not compact. So, in one single example

you have so many counter examples here.
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There will be more to come. This is another wonderful property of .

Every continuous  real  valued  function  on   is  eventually  a  constant.  See  the role  is

reversed here. Usually, if you have a continuous function from  into a disconnected space



connected space or a discrete space, then it is a constant. That is the kind of result we have

been familiar with and coming across all the time.  

But here, this is highly disconnected, and  is connected space. So this is eventually constant,

so what is the meaning of that? There will be some  inside  such that  of the right ray

 is a singleton.

By composing with a homeomorphism  from  to  (there are many homeomorphisms

like this, for example you can take ) we may assume that the function is bounded and

indeed we can assume that   itself is taking values inside . Put   equal to the closed

right ray (I am changing the notation here, instead of .)  We shall claim that there exists a

monotonically  increasing sequence   in   such that the diameter  of   (as  a

subset of  the diameter makes sense with respect to the standard metric on ) is less

than two thirds raise to . Some number raised to  is good enough, that number must be less

than  that is important and crucial for us. 

Then if you take  as limit of , in , it will follow that  is a singleton. This is due

to Cantor's theorem. Balls of radius smaller and smaller converging to . So the intersection

must be a singleton. 

So, that is the way we are going to prove this theorem just by constructing a monotonically

increasing sequence in   which will automatically converge and that convergent point

will be our  . Then   will be a nested sequence of non empty closed sets with their

diameter tending to . So, we have to construct this sequence. 
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However, we are going to prove slightly different statement (perhaps  lightly stronger one).

An inductive statement here and then apply it. So, this statement (S) is as follows: 

(S) Given  belonging to , let   from  to  be a continuous function (right now,

recall that  denotes the closed right ray). Then there exists  bigger than  such that 

is contained inside the first two third of  or this second two third of .  

See first two third means what? .   is the length of  . So the first

 is the interval from  to  plus that much. Similarly, the second  is the interval starting

from  plus one third of  all the way to . I want to say  is either here or here. It

may be in the intersection also that is good enough for me, no problem. It is contained in one

of them is important. That is what we have to prove.  



Assuming (S), we construct a sequence  as follows. See, first I had  then if this  is 

then what happens? The diameter of  will be at most two third. apply this , apply the

same thing to this function repeat this process you will get another  such that that diameter

of the new thing will be two third of that, and that is what we are going to do. 

So, then we construct a sequence   as follows. Start with any   inside  . Take  

equal to  restricted to , take  equal to  as given in (S). Inductively having defined ,

repeat the above step to the function  equal to  restricted to  and then take  to be

the corresponding  given by (S). 

This (S) is a general of statement, I am starting with this hypothesis that   is a continuous

function from  to . So, to begin with the diameter of  is less than . At very first

stage, I will be getting diameter less than two third, and next one two third square, two third

cube and so on. So, we have to prove this statement (S) once we prove this one, this inductive

step is over, Then the proof is over. 

So, let us prove this statement (S) now. 
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Look two disjoint closed subsets   and  . These

two disjoint closed intervals are got by deleting the middle one third open interval from ,

like in the Cantor set construction.  

If you take  of these two disjoint closed intervals, they will be disjoint closed subsets of

. What do we know about the disjoint closed subsets of , we have done something

on them, you see. So, that can be used now. As seen before, one of them is countable and so,

has an upper bound say the first one is bounded by . It could be the other one, that one does

not matter, it is symmetric. 

So let us assume that the first one is bounded by ,  is an element of one element of  of

sorry,  element the domain of  viz., , so  is bigger than or equal to , and we have 

will be contained in the complement of the first interval.  

Likewise, if the second one is bounded by , then you will that  will be contained in the

complement of . So, that is the conclusion of (S). 

So, that is why I separated out this (12) while proving normality of , instead of proving

directly that disjoint closed subsets can be separated by disjoint open sets. Pairs of disjoint

close of subsets have themselves some interesting property namely one of them has to be

countable and that is used here. 
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So, next thing is a strong conclusion. The first thing is   is the Alexandroff's one-point

compactification of . This is very easy to see, by the very definition. There is only one

extra point  in the larger space. And what are the neighbourhoods of this ? Something like

. The complement of this will be   is closed and compact. And conversely. Any

compact  subset  of   is  a  closed  subset  of   also and hence  its  complement  is  a

neighbourhood of .

Also note that  is a compact Hausdorff space. So, it follows that  is locally compact

also. So, Alexandroff, one-point complication makes sense. If the extra point here is denoted

by infinity, that infinity can be sent to this capital  to get a homeomorphism that is all, So

whichever  way you want  to  see it  is  easy  to  see that  this  is  the Alexandroff's  one-point

compactification of .



It  is  also  the  Stone-Cech  compactification  of  .  Because  of  this  property  that  every

continuous function  from  to  is eventually a constant. Therefore, you can extend it

continuously to  by defining  equal to that constant.  

So, every continuous function from  to  can be extended to , uniquely. That is

the characterization of Stone-Cech compactification. So, that is what we have to remember

now.  Any  compact  space   which  contains   and  having  this  property  of  unique

extension  of  continuous  functions  into   must  be  equivalent  to  the  Stone-Cech

compactification  of  .  That  the  meaning  of  the  characterization  of  Stone-Cech

compactification. 

There is a final thing here. Since   is a   space, (  and regular, that is enough), its

Wallman compactification   exists and is normal. We have seen that. Perhaps it was an

exercise. If you have  space, then its Wallman compactification is Hausdorff. 

So, we have got  is a Hausdorff space. Then we have made a remark that whenever

the  Wallman  compactification  is  a  Hausdorff  space,  it  is  the  same  as  Stone-Cech

compactification.  So  that  was  another  remark,  which  you  have  studied.  In  particular,

 is equal to .

Using all these things, we conclude that   is three different compactifications of  

simultaneously. I do not know any other example with such a property. 
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So here is one more concluding remark. Though [0, Omega] is a compact Hausdorff space, it

has a subspace Y, which is not compactly generated. See I wanted to have an example of a

subspace  of  a  compactly  generated   space  which  is  not   compactly  generated.  So,  this

example seems to be a simplest example have you studied. All these are now easy examples

for us. The original space is compact Hausdorff. Obviously it is compactly generated, but the

subspace we have  here  is not compactly generated. 

So, what is that subspace? Let us see. Take Y to be obtained by [0, Omega]  as a subspace of

this, by deleting all the limit ordinals except the top one, capital Omega. For instance, the first

thing I will  omit is little omega, then I will omit twice omega, then I omit three times omega,

and so on,  then I will omit omega square and so on, all those limit ordinals are omitted. But

the last one viz, Omega I will keep. 

We first claim that every compact subset  of  is finite now. Every compact subset of 

is countable, that we have seen. Now, we are claiming something stronger: every compact

subset of this subset , is automatically compact in  also but it is a subset of , then it is

finite. Let  be a compact subset of . Then  will then be a compact of . 

If  were infinite, first of all it is countable. If it is infinite countable, we can then extract a

strictly increasing sequence in  which will converge to a point  in . This limit point 

will a limit ordinal. Being a limit of a sequence in  which is closed s will be inside . But

 is  inside   and   does  not  contain  any  limit  ordinals  inside  .  So,  that  is  a

contradiction.

So,  has to be finite. 

Now take , i.e., you throw away  also. Then  will meet every compact subset

of  in a closed subset  because  is just a finite. Yet  is not closed because  is a closure

point  of   and yet  is  not  in  .  This  contradiction proves  that  the topology on   is  not

compactly generated.  

Remember compactly generated means what? For every compact subset  , if   is a

closed  subset  inside   then   itself  must  be  closed  inside  the  original  space.  And that

property is violated here. 



I  think you  must  have  been  satisfied  by now that  this  ordinal  space   has  so  many

properties,  wonderful  topological properties,  so that  justifies our efforts in studying these

ordinals. So, next time we will do one more example using the ordinals. But we will construct

something more, some more interesting things, from a topologist's point of view. Thank you.


