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Hello, welcome to Module 47 of NPTEL-NOC an introductory course on Point Set Topology

Part 2. So, today we will introduce the Order Topology. So far, we are only studying the

partial ordered sets, totally ordered set and so on, only set theoretic aspect. So, today we are

bringing topology. In essence, we had already done this in part I. So, some part of it will be

just recalling an example, it was an example there of a topology. 

So, let us recall that, start with a linearly ordered set or whatever you call totally ordered set.

For any point  in , let us have this notation,  is the left ray. So, here I am taking open

left ray, the set of all   in  less than , and  is the right open ray, the set of all   in  

bigger  than  .  These  are  reciprocally  called  left  ray  and  right  ray,  they  are  also  called

respectively initial segment and terminal segment. So, this terminology also we have used.  
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Now, let us define  to be the collection of all , where x ranges over , this is a family of

subsets of  now, the family of all left rays. Similarly let  be the family of all right rays,

and   is  . Take this   as a subbase for a topology on  . Any non empty family of

subsets of  can be taken as a subbase for a unique topology on . All that you have to do is

take all finite intersections and then take all possible unions that is the topology. So, take  as

a subbase for  a topology which will  denote by   just  to remind you that  this topology

corresponds to the linear order with which we started.  

For x less than  in  let us also have this notation  (this should not be confused with

the ordered pair) to be the set of all  in  such that  is less than  less than . So all points

strictly between  and . It may be empty also we do not know. Borrowing the terminology

and practice from real analysis, , , , etc are all called open intervals in .  

Likewise, we define closed intervals and half-closed intervals also all that you have to do is

your have to put `less than or equal' to here, instead of `less than'. So on I do not want to go

into those details, those things are common practice. So, I will also use them, there is no need

to again spend 2-3 minutes on it. For example, if I take here if I take less than or equal to,

then that will be the call a closed ray, closed left ray and closed right ray and so on. 
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So, we should see at least a few important properties of this topological space, some of the

proofs being either trivial or left to you as an exercise because some of these things we have

seen before also.

(1)  If you have an order preserving bijection from  to  from one linearly order

set to another,

Then  this  thing  as  a  map  from  topological  space  with  corresponding  topologies,  is  a

homeomorphism of  the  respective  order  topological  spaces.  Indeed,  it  will  preserve  the

subbasic open sets themselves, so it is a very strong homeomorphism. 

(2) If   has no least element nor greatest element, then the family   of all open intervals

 forms a base for . 



If you take intersections of left rays and right rays you will get these intervals. 

However, this will not work if there is a least element or a greatest element in . You know

to get a base you will have to include those elements also but the extreme elements will not

belong to any open interval. You have to be careful about that one. For example, suppose 

is , the closed interval in . If we only take open rays, there will be problem because 

and  are not covered. 

So, that is why all that you have to do is the following. If  (I would like to put a prime here

not to confuse it with the real number ) is the least element of , (if there is one, all that you

have to do is to include all  half closed intervals,   also to  .  Similarly,  if  there is  a

greatest element say infinity prime in  , then include all half closed interval   to  .

Then that family will be a base. Whereas, defining the subbase, there is no such problem. 
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Now, first thing we observe is this topology   is Hausdorff.  So, given   less than   (of

course, given  not equal to ,  is less than  or  is bigger than , so, I can assume  less

than ), if there is  such that  less than  less than , then we can take  equal to  and 

equal to  as disjoint open left ray and right ray open left ray. Then  will be inside  and 

will inside . (And I am giving you an argument to show that this topology is Hausdorff, I

have not completed yet). On the other hand, if there is no  at all between  and  (this can

happen  for  example,  when  you  take  natural  numbers  with  the  usual  order)  then  what



happens? Then take  equal to  and  equal to .  will contain  and  will contain 

and there is nothing in between. So, their intersection will be empty.
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Now, let   be any non-empty subset of  . If supremum of  (respectively infimum of )

exists then supremum of  (respectively ) is inside . See this closure is with respect to

the topology .   

The proof is exactly similar as for real numbers, actually much simpler if you think. Do not

use any algebra of real numbers, no need of that. Just the definition of infimum and what is

the meaning of open sets here and what is  the meaning of closure and so on? You may

assume that   is  not  a  singleton,  because  supremum of   supremum of   will  be  that

singleton itself and it will be already inside the closure. There is nothing to prove then. We

can also assume that Sup B is not infinity primes (respectively  is not) because these two

cases are easy.

So, we have to show that every neighbourhood  of  (where  denotes the supremum of )

intersects . That is the meaning of saying  will be in . Since  contains an open interval

around  there exists  in  such that the half open interval  is inside . There is also an

open interval on the other side of , I do not care. 

It is enough to prove that  is non-empty. I want to show that  is non-empty.

But if this is not the case, what happens?  will not be the supermum of , because  itself

will be an upper bound for . So, this is a contradiction.



 So, similarly infimum of  is also inside closure of .  

So, in part I,  we have proved that if   is  connected, then it  is order complete. I am just

recalling that one and not proving it here. If   satisfies the property that between any two

distinct elements, there is a third element then the converse is also true. So, these two things

we had proved there. 
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Now, recall that we use connectivity prove that every closed interval in  is compact. That is

why are studying this. We then used this to prove Heine-Borel theorem for .  First of all,

we proved that closed intervals in  are compact. And then passed on to  and so on. 

Closed and bounded intervals if  you like.   or   are not closed intervals in  .

Forget it, open intervals can be bounded or unbounded.  is not a subset of  though it

looks like a closed interval, it is so in the extended real number system.

The same way we can prove something, similar to Heine-Borel theorem now in the context of

an order complete space. 

So, start with a totally ordered set , let  to be a compact subset of . Then  is closed in

 and  is complete and bounded in the induced order topology. 

(Bounded means what here? Bounded below and above. In the induced ordered topology on

 completeness also comes.) 



Conversely, if  is order complete, then every closed and bounded subset of  is compact. 

See this order completeness comes by taking the restricted order, the same order on  being

restricted to . that is why I am saying the induced order. So, this result is `if and only if'.

Compactness implies closed and bounded close and bounded implies compact. 
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Let us go through it carefully. Start with the compact set , suppose  is not bounded above,

if  a  subset  is  not  bounded  above  in  your  space,  the  space  is  also  not  bounded  above.

Therefore, the family ,  belonging to  becomes an open cover for . So, in particular,

for  also. But since  is compact, we will get a finite cover. 

 is contained inside union of  say, for  ranging from  to . Take  to the maximum of

. There are only finite many of them in a totally ordered set, so, you can take

the maximum. It follows that  is bounded by  because  are all contained inside . Now

we see a contradiction. We just said  is not bounded above. 

So  is bounded above. Similarly, we can show that  is bounded below. Instead of , we

take 's, That is all.

Now,  is Hausdorff space, we have seen just now. It follows that being a compact subset, 

is closed.  

Finally, the order completeness of  follows easily from what we have just observed, namely,

infimum and supremum of this set  which are defined because  is a bounded set, They are



both inside . They are inside  but  is  because  is closed, so they are inside  over. So

that is precisely the meaning of the order completeness. 
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For the converse part, let  be order complete and  be a closed and bounded subset. It

follows  that  with  respect  to  the  restricted  order   itself  is  order  complete  and bounded.

Therefore, in order to prove that   is compact, without loss of generality, we may assume

that  itself is bounded and prove that  is compact.

So, that is how I stated it. If  is order complete and bounded then it is compact. Here we use

Alexander's subbase theorem. So, what we will take  to be an open cover for  by members

of this standards subbase. You fix a subbase then take for every subfamily of that which will

cover   show that it has a finite subcover, that is enough to prove that   is compact, by

Alexander subbase theorem. 

So, here what we do? We take the family of all left rays and right rays, viz.,  ,

remember that. So, take a subfamily  of  which covers . Now get finite subcover. Then

Alexander's subbase theorem says the space  must be compact. 
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So, put   equal to minimum of  . (We have   is bounded, so immediately we are using

that.) Then  cannot be in any right ray because, I am taking only open rays here. Hence, it

must belong to one of the left rays, because left rays and right rays in  are going to cover 

I mean I have chosen some family  of left rays and right rays, that covers , it is not the set

of all the left rays and right rays some left rays and right rays it cover. 

So, this   must be in one of the left rays in  . Put   equal to all those   for which   is

inside . So, this  is a non-empty subset because  must be in one of the .  

Now, put  is equal to the supremum of .  being a subset of  is bounded above. So, by

order completeness supremum exists. Then this   cannot be in any   because it is bigger

than all  in . Just see here, if  is in  for some  then  is strictly less than  right? So, 

will not be in  for any  inside . Therefore,  must be, (all left rays in curly  are all taken

here), so, what are left out?  must belong to one of the right rays  for some  inside .

This means that  must be bigger than . Strictly bigger than . Since  is the supremum of 

, it follows there is  belong to  between  and ,  less than  less than less than equal to

be , (actually strictly less than , because we already saw that  is not in ).

So, I have used that beta is supremum here. So, this is the property of supremum.  less than

 less than or equal to  with  in side . But then we have these two members  and ,

belonging to .  must be equal to , because  less than . 
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Next we have seen that connectivity implies order completeness.  Just  recall  that this was

done in the part I, that is one of the things we have proved. That is one way to get order

completeness. 

Now if  is well ordered, then also it is order complete, because every subset (bounded or

not) has a least element which a greatest lower bound.  

On the other end, well ordering implies that the topology is totally disconnected provided it

has more than one element. That is what I said is far away from being connectivity. So, how

do we see this one, namely,  belong to  be not a maximum, not the maximal element. Pick

up some element is not maximal, that is  not equal to empty set, there are elements bigger

than . This mean  is non empty. 

We take the infimum of  and denoted by  and call it the immediate successor of ,

immediate successor. By the way, this immediate successor is the key to the entire theory

involved in Peano's axioms and Zermelo-Frankel's theory and so on. The idea was actually

goes back to Grossmann. In modern set theory, perhaps his name does not appear so much

but this immediate successor, he pointed out. But, finally, it was Peano whose axioms became

the best, there are many many trials in between, several people have tried it, you know, one

of the other guy whose name is quite quoted is Lebesgue. So, Peano's axiom is based this.

The entire algebra of natural numbers is constructed out of this. This is the first-time that

appears this plus sign in algebra, logically, the notation . We are not going to do any

algebra, we are stopping here.  is that I have introduced now.



So, if  is non-empty for any , then you take the infimum because  is well ordered. So,

infimum exists and it is unique. that infimum you called  . So, it follows that the half

closed ray , (this bar denotes the closure also, so, there is no contradiction no clash here,

with resepct to the order topology), is just defined to be the set of all  such that  is less

than or equal to . Strictly less than would have given you the open ray . 

 So,  is a closed right ray. But now if you take the open ray  what happens? There is

no element  between   and  .  So,  open ray   is  also equal to the closed ray  .

Therefore, this is is both open and closed. Therefore, for all   such that  is less than , 

would be a clopen set containing  and not containing . 

So, there is separation, so you can actually write down separation  separation X

one containing and another containing  . So, this is stronger than totally disconnectedness,

namely,  it  actually  satisfies  our  SI,  what  we  have  studied  earlier.  So,  stronger  than

Hausdorffness, stronger than total disconnectedness also. 
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In any case, every point other than the least and the greatest element are `cut points'. This

name `cut points is also used in the above situation. It means what? You throw away that

point from the space, it becomes disconnected, such points are called cut points. 
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So,  I  think  this  much topology is  good enough for  one day.  You will  have  many other

topological aspects of this one because finally, our aim is to produce lots of examples out of

one single example. So, we will meet again. Next time we shall construct the ordinals, the

example that we are interested in. Thank you.


