
An Introduction to Point - Set - Topology (Part II)
Professor Anant R. Shastri

Department of Mathematics
Indian Institute of Technology, Bombay

Lecture No. 46
Principle of Transfinite Induction

(Refer Slide Time: 00:17)

Hello.  Welcome to  NPTEL NOC an  introductory  course  on Point-Set-Topology,  Part  II.

Today, we shall begin with our study of Principle of Transfinite Induction. As an application,

we will also employ this one and give a proof of Tychonoff’s theorem. Of course, we have

proved Tychonoff’s theorem elsewhere. So, that is a good way of learning a new tool test it

on something which you already know, where it works.

So, the principle of transfinite induction states the following. Start with a well ordered set

with the least element, we will denote it by  . This is for convenience. Suppose   is a

statement about   inside  , and we use the symbol   to denote the statement that  

holds for all  inside , where  is a subset of . Now, suppose  is true and for any 

inside ,  is true implies  is true. (  is the initial segment in  consisting of all

 which are less than  inside . Remember this means that  is true for all  less than ,

that is the meaning of  . If this is the case, then the principle of transfinite induction

concludes that  is true, that is, for all elements alpha of , the statement   will be true.
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Proof:  

Suppose on the contrary,   is not true for some  . What does that mean? This just

means that if you take  to be the set of elements inside  for which the statement is not true,

that is a nonempty subset. This  is a nonempty subset. A nonempty subset in a well ordered

set has a minimum  and  is inside this . (That is why we can call it as minimum). Since

 is true by hypothesis, that means this , which is the minimum of  is not equal to .

Any way   precedes  . And for all   which precedes  ,   is true, otherwise   will be

inside   a contradiction. Therefore   is true. By hypothesis, this implies   is true

which means  is not in  again a contradiction. So  must be empty.

So, that  is  a  proof of  principle  of  transfinite  induction, which is,  as you see,  is  an easy

consequence  of well  ordering.  So, that  is  the whole idea.  So, we will  see,  well  ordering

always holds. 

The point is, you are already very, very familiar with the principle of mathematical induction.

That is a special case of this, when  is the natural numbers along with the usual order. Of

course,  that  is  a  well  order.  So,  this  principle  of  transfinite  induction  is  a  far,  far

generalization of mathematical induction. This is true for any .

As soon as you have a well  order  there,  you can use it  like this.  So, our next aim is to

illustrate  the  use  of  principle  of  transfinite  induction  with  one  single  example  but  that

example  is  going  to  be  something  very,  very  important,  namely,  product  of  arbitrary

nonempty families of compact spaces is compact. 
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That is the Tychonoff’s theorem. We have given several proofs of that. Now, we will give

another proof of that one here. So, I am going to use one of the theorems that we proved in

part I. I will not have time to do that again here, but I will recall it for ready reference. This is

the theorem that we proved in part I. 

Let  be any topological space, then the following two conditions are equivalent. 

(a) The first condition says that for every topological space , the projection map  to 

is a closed map. 

(b) The second condition is   is compact. So, this theorem gives you a characterization of

compact spaces. So, what we are going to do is employ this one both ways in proving that



Cartesian product of compact spaces is compact. Of course, you take a nonempty product of

non empty spaces. That is important. (statements for products involving empty spaces and

empty product etc can be settled easily.)  
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Every nonempty product of non empty compact spaces is compact. So, the proof seems to be

just a small trick, by using the principle of transfinite induction correctly, which amounts to

more or less selecting appropriate notation here. Otherwise, it is extremely easy proof. So, I

will tell you the idea first and then tell you how it works in simple cases. Rest of them is just

pure notations and so on.

So, given an indexed family  of compact spaces, we want to prove that  is the

product of all ,  is compact. The plan is to show that for any topological space , the

projection map   to  , (away from   to the first factor), is a closed map, and we

appeal to the previous theorem. To prove this itself, we will use the principle of transfinite

induction. 
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So, here is the first step, which will tell you what kind of tricks we have to do in order to

employing principle of transfinite induction. Put a well order on the set, that is, important set,

namely, the indexing set . Let us denote the least element there by .   belong to  is the

least element. Take any order on , no problem. It must be well order, that is all. Extend this

to a well order on  which is disjoint union of  with two extra elements. I am denoting them

by   and infinity. By declaring that, every element in   is between   and infinity, we are

extending the well order on I prime to a well order on . In other words, now  is the least

element, and infinity is the greatest element in . To begin with  is the least element of  but

there may not be any greatest element in . So, I have put a greatest element also. So, this is

the first trick, you can say.



Clearly  becomes the least element and infinity becomes the greatest element inside this ,

which has two extra elements than .

Student: Sir, in the first line, we are using the well ordering principle, right? 

Professor: For . 

Student: And now, on , you have define an order. It will, it may not remain a well order set.

Professor: It is well order set. Take a subset. If it contains ,  is the least element, fine. If it

does not contain , it will be inside , except that it may contain infinity, that does not matter.

Infinity is the largest, it cannot be smallest. You throw away infinity also, there will be a

smallest element in that set. 

Student: And because  is well order. 

Professor: Yeah. Well order, even in the proof of using Zorn’s lemma, proof of that one, we

have  extended  this  one  and  so  on.  So,  the  extensions  of  ordering  for  one  element,  two

element, three element, any finitely many elements is obvious. Wherever there is infinitely

many elements to deal with we have to go back to Zorn’s lemma, we have to go back to well

ordering principle. 

In other words, what your objection may be that, suppose  is well order, and  is contained

inside a larger set, inside . Will there be a well order on , which extends the well order on

? Even that is true. So, but we have not proved any such thing. Whatever proof we have

given for existence of well order, you can modify it to prove such a thing also.

So, that is not of any use for us, I am just, I am going to two elements, I prefer, I want it this

way, not an arbitrary order.  is the least element and  is the, infinity is the largest element.

In fact, we want to work inside   only, but these two things help us in putting the correct

notation instead of getting, instead of buggy notations, that is all. Now, for each , let us

denote the segment ,  which means all elements strictly between  and  including  and .

So, this, I will denoted by . Note that , infinity is nothing but the whole space . 

So, that is not of any use for us, I am just, I am just adding two elements, I prefer, I want it

this way, not an arbitrary order.   is the least element and infinity is the largest element. In

fact,  we want to work inside   only,  but  these two things help us in putting the correct

notation instead of getting, instead of buggy notations, that is all. Now, for each  , let



 denote the set of all elements between   and   including   and  . So, this, I will

denoted by . Note that  is nothing but the whole space . 

Now, another small trick. I want to prove that for an arbitrary topological space  ,  

prime to , where  is a product, that is  to , sorry, is the projection map, that is a

closed map. So, I want to change the notation here. Put   equal to   now. And for  ,

choose another space, namely a singleton , which is a harmless thing, it is again compact.

This  is may not be compact, and is not supposed to be compact anyway. Now, to take 

to be product of all these . 

Remember, if I only take the product over , then that is , that is what we want to prove is

compact. Taking product with one more factor which is a singleton  and proving that is

compact is the same thing as proving the original thing  is compact. What we are going to

prove now is that  is compact. 
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Some more notation: For any non empty subset   of  , let   denote the product of  ,

where  ranges over  itself. For each pair of subsets  contained inside  contained inside 

, (equality allowed), 

let  denote the projection map from  to .  is larger, which just means that drop out

all the indices which are not in , that is the projection map. One more simpler notation: let

 be simply denoted by  . That is when  . So, that the projection from the whole



space  to . These are all projection maps. Note that with this notation,  is  and   is

the identity map. Nothing is dropped out. 

One more notation,   is what? It is just projection of   onto , the  coordinate space

which  . We want to show that this is a closed map. Since   is arbitrary, this will

prove that   is compact. That is the same thing as proving that   is compact. So,

this is what we want to prove. 

Now, the next step is, start with a closed subset   of . You have to prove that the image

under   is a closed set in  . So, take a point in the closure and show that it is inside the

original set  . We want to show that a set is closed so we show that it is equal to its

closure. Closed. So, I will take a point in the closure and show that it is inside. That is all. 

Now suppose, you have just a single compact space . Then you know that the projection

map  to  is a closed map. More generally, suppose you have to deal with finitely

many compact  spaces  .  You already  know that  the projection maps  from the

product space whee you drop out any number of indices  are all closed maps. 

So if you start with a closed subset  of  and a point  which is in the

closure of , you first know that there is  such that . Next you

know that there is  such that  and so on..., there is 

such  that   which  is  nothing  but   which  is  .  But  then

 and hence  is in  itself.    

So, this would have been another proof in the case of when we have taken product over a

finite family. We need not prove this case anyway. 

So this is only to get an idea. However, the above simplified notation are not available for us

when  dealing  with  an  arbitrary  product  and  that  is  why  we  have  introduced  the  above

elaborate notation and then use transfinite induction. I hope this makes the idea involved in

the in the proof, a bit more clear. 

So, start with a point  (use top suffix here because I would like to use the lower suffixes for

the coordinates. This is some point in  , bar denoting the closure in  . So, for each

, I will make a statement here  :   denotes the statement that there exists some  

belonging to  such that this  is actually inside . (You have started with  which is

a closed subset of the product space  , project it to this  , and take its closure. So, this



element must be in this closure.) Moreover,  it must also satisfy that the ’s projection of this

element agrees with  for all  . Note that your  belongs to . That is the

inductive statement. One single statement  means all this. 

Our aim is to get  such that  of  is . But while doing so, we keep track of earlier

. Namely for all , we must have already chosen  such that . We

want  to satisfy the condition that its projection onto  coincides with . That may be

termed as compatible way of lifting the element  from  to 's. 

So, this is what I did in the illustration case when dealing with a finite product. First you

choose  and then  and then  etc. That kind of notation is not possible, in

he general case. That is why we have chosen this elaborate notion and the statement . This

statement makes sense, even when   is  .  There is  no problem that   has been already

chosen. So, we know this statement is true for . Otherwise, it is just a statement now.

Why am I making the statement? Examine the statement  . What is the meaning of the

statement ? That means, there is a point  inside , with the property that  is inside

. But   is F. So,   is inside F. And this one means that in particular,

 is . 

So, what does that mean? That means, this point is in the closure, but it is actually inside .

So, we have shown that this  is inside . So, that will complete the proof. So, just the

idea of making the statement. This statement   for   equal to infinity is the one which we

want, finally. What is the starting point? The starting point will be  or for example,   is

true, obviously. Then just for getting the feeling what to do we shall prove . Then we have

to prove that  for all  implies  is true. That step is the hardest step here. 
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So, let us prove . This is where the induction begins. What is ?  is a compact space.

The projection map from  to  is a closed map because  is compact. Look at 

from  to . This I could have written as, in the square bracket also here, no problem,

viz.  , both of them are the same (Do not confuse   with the closed interval in  .)

There is nothing else between  and  in the set  by the way. So, take the closure of .

Then take the first projection  from  to . That will be a closed map because  is

compact.  So,   will  be  closed  subset  of   and  contains  this  subset

.  Therefore,  it  contains   because  it  is  a closed subset.  Hence it

contains . This means that you have an  inside  such that this  belongs to 

. This proves . So, this is why I have explained it already before. Now, I am using this new

notation, I have explained it. So, this is the way from  to  and so on, we can go on,

keep going, very easily. But now, we want to use induction, directly. 
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Now, next thing to prove is that suppose for some , , this should be ,  is true for

all  . We want to prove that   is true. Why? Once we prove this, the condition for

transfinite induction is over. That will prove that  is true. So, all that we have to do is to

show that  is true.

Define  belongs to , the product ,  running inside , such that the  coordinate

of  is the equal to the  coordinate of  for every .

Then it follows that this  which is nothing but the projection  is  , for each .

All that you have to verify is to take the  coordinate on both sides for . Then, these are

same because I have just projection maps there. So that is what I do now. 



For, to begin with fix  then the  coordinate of  is , that is same thing as the 

coordinate of . Now if , then from this property (34), what we get?  of  is .

So, this implies that the -th coordinate of  is equal to -th coordinate  also, So, that

means that -th coordinate of  itself is equal to the -th coordinate of .
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So, I have defined what  should be. This  will be in  operating upon , the closure of

that. So, all this is happening inside  that is the claim.  

We have got   which projects correctly. But why it is in the closure of this set? So, this is

where something has to be used from the product topology. What is that? The definition of

product topology, that is what we are going to use. 

Let  be a neighborhood of  in the product topology. What does that mean? There exists a

finite set  contained inside  and an open subset  contained inside , such that  is inside

 cross this ,  is the product of all  where  ranges over the complement of . So,

that is a basic neighborhood. There will be some such neighbourhood contained inside .

Choose   to be the maximum of  .   is a finite subset of  . That is why a maximum will

exists. And put  equal to  contained inside , where  is . I have taken

the full spaces  where  is not inside  but in , of course that is . 

See  is an open subset in the finite product . So, I am taking , a larger set containing

. Then I take this open subset inside . 



Then we automatically get   belonging to the open set   which is contained in  .

(Here  complement  of   is  taken in  .)  So,  only the   coordinate of points here are

restricted  for  ,  all  the  rest  of  the  coordinates  are  freely  in   These  are  basic

neighborhoods. 
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Therefore, what happens, what is the meaning of this one? If you take the  projection of

, (so  is a subset of   and it contains  and hence the  projection of  

will contain  which contains  equal to .

First we choose only finitely many coordinates properly, afterwards, we allowed the rest of

the coordinates to be free, so that  will come inside that. So, this  is now inside . So, that

is the whole idea here. But its  projection is nothing but , from (35), for all . So,

from (34),  we  know that  this   is  inside   and   is  open  in  .  It  follows  that

 is nonempty.

This implies  is non empty and that is contained in  intersection the

projection . So, each neighborhood of , intersects this one. Therefore,  must be the

closure of .

So, these notations may be new to you, but this kind of thing, you have proved while proving

product is connected etc. So, similar argument, this is not new to you.
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The next step is similar to . What is that? We have yet to prove that this implies the next

one .   

Now, consider the projection  from  to , namely, from the full product which

has one more factor,   the closed segment  , and omit the last coordinate to come to

. Because   is compact, this projection is closed. (So, you have to use each   is

compact, after all. 

Therefore  the image under   of  ,  is  a  closed  subset  of  .  But  it  contains

. Therefore, it contains the closure of  Therefore, there exists

 belong to , (I can now lift  into the product of one more factor, that is the whole idea),

such that  (what is the meaning of this notation now? there is a  such that its

projection onto  is . And the  projection is ), and this element is in . 

So here, I am using that  is compact. One at a time, that step, please note. 

So, clearly for all , if you take the projection of this  on , that will be , being

same as the projection of . 

So, this proves the statement .

So we have proved assuming that   is  true for  every  ,   is  true.  That  closes  the

transfinite induction. Over, the proof is over. 



So, this proof is worth repeating quite often, you read it carefully. 

Next thing is, we want to go ahead with this order topology and so on. So, how far we can

imitate the model, namely, the real line with its order.
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So, we go back to that and introduce a few more terminologies, all based on what we know

already, what we are familiar with a real line. So, let us recall the notation of least upper

bound and greatest lower bound in the context of a totally ordered set. We are recalling so

that everything is devoid of all algebraic properties of real line. Only the order properties are

being used. So, that is why we are recalling, emphasis on that.

So, start with any totally ordered set . A subset  is said to bounded above (respectively to

bounded below) if there exist alpha belonging to   such that for all  , we have 

(respectively, the other way around, ). Bounded above and bounded below. In that case,

this   will be an upper for   (respectively, lower bound for  ). Like  be bounded above,

and  is an upper bound for it. 

(Refer Slide Time: 39:09)



We say  is the least upper bound (another name is supremum) of  if for every upper bound

 of , we have . That means, first of all, the set of upper bounds must be nonempty,

which just means that is bounded above. Then, you take alpha to be the least element of the

set of upper bounds. For all upper bounds are bigger than  . So, then it is called the least

upper  bound.  It  is  a  very  descriptive  name.  Supremum  is  another  terminology.  Exactly

similarly, you can define greatest lower bound and infimum also. The notation will be 

and  . 
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Note that we have not claimed that supremum and infimum exist. However,  it  is easy to

check that they are unique if they exist. And that is where you have to use the anti-symmetry

property of the total order. That is all. 
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In a totally ordered set , the following two conditions are equivalent. What is that? 

(i) Every nonempty subset   of   which is bounded above has a least upper bound in  .

(That upper bound may not be an element of  in .) 

(ii) Every nonempty subset  of , which is bounded below has a greatest lower bound.

This is just the dual of the statement (i). But these two are equivalent. So, let us prove (i)

implies (ii). The proof of (ii) implies (i) is just the other way round. Just that you have to

reverse the inequalities everywhere. So, they are similar.

(Refer Slide Time: 41:20)



So proof of  (i) implies (ii): Start with a nonempty subset  of , which is bounded below.

Look at all the elements  in  such that  for every , which just means looking at

all  the lower  bounds of  .   is  nonempty,  follows because  we have assumed that   is

bounded below. And because  is nonempty to begin with, we now have  is nonempty and

it is bounded above. Every element of  is an upper bound for .  

So, (i) implies that  exists. Every bounded above set has the least upper bound. So,

this is the hypothesis in (i). Now, we have to conclude (ii). 

Let  is the set of all  such that  for all . Then by definition,  is the least

element in . Clearly  contains  and hence  is lower bound for . This means  is in . If

beta  is  any  lower  bound  for   then  by  definition  beta  is  inside  .  Therefore,  .

Therefore,  is the greatest lower bound, this infimum. So, by upper bound exist and then the

supremum exists if the lower bounded below, lower bound exists is what we have, infimum

exists is what we have.

The proof (ii) implies (i)  as I have told you, is similar.

Added by reviewer: Note that in case of , the same thing is usually proved by considering

, which we cannot do here.
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Few more terminologies.  A totally ordered set  is said to be order complete if  it  satisfies

condition (i) and hence condition (ii) (because they are equivalent to each other by the above

lemma). I repeat what is the meaning of order complete? Every bounded above set must have



least upper bound which is same thing as saying every bounded below set has a greatest

lower bound. 

Note that  must be, first of all totally ordered set. In addition, if the above condition is

satisfied that we say it is order complete. (So, you may be already knowing that this property,

we have been extensively using for the real numbers.) So, we have made the definition here. 

If  is a linearly ordered finite set, then it is easy to see that it is order complete. Therefore,

order completeness axiom is relevant only when  is infinite. 
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Next  time,  we shall  use  all  these  and  we will  study order  topology.  So  far,  we are  not

mentioning any  topology at all. All the time, we were talking about the combinatorics of this

partial ordering, total ordering, well ordering and so on. Now, topology will enter. Thank

you.


