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Hello.  Welcome to NPTEL NOC, an introductory course on Point-Set-Topology, Part  II.

Today, we shall start a new topic, module 45, Partially Ordered Sets. Let us recall some basic

theory of partial orders. Some of them must be already familiar to you. So, we should be

somewhat quick here.

By a partial ordering, which is usually written less than or equal to, on a given set  , we

mean a binary relation which is reflexive, transitive and anti-symmetric (unlike the case of

equivalence  relation,  which  is  reflexive,  transitive  and  symmetric).  So  that  is  the  big

difference here, anti-symmetric. Anti-symmetry just means that if  is less than or equal to 

and  is less than , then  must be equal to .

A set with a fixed partial order is called a poset. A partial ordered set. It has been shortened to

poset.  Strictly speaking, it  is the ordered pair  .  But as usual in topology, in metric

spaces,  just  the way we say,  let   be a metric space,  let   be a topological  space etc.,

similarly, we will say `let   be a partially ordered set, let   be a poset. But then we may

immediately  mention  what  the  partial  order  there  is  whenever  we  are  dealing  with  it,

specifically. 

We also use the symbol , to mean that  is less than equal to  but  is not equal to .

Less than equal to  will include  equal to  case also because if  is less than ,  is less



than or , then  is equal to , that is what we have seen. And reflexivity just means that  is

always related to . So, that is already there.
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Given a subset  of a partially ordered set, an element  in  is called an upper bound for 

if  is less than equal to  for all  inside . So, you may say that  is the biggest amongest all

elements of  , but   itself may not be an element of  . So, that is called an upper bound.

There may be many upper bounds. There may not be any upper bound either. So, it is just a

definition, no assertion of existence or uniqueness. It is called a least upper bound, if  is less

than  for all upper bounds  of . For all upper bounds ,  must be less than or equal to .

So then it is called a least upper bound.

Note that least upper bound, if it exists, is unique by anti-symmetry, because if   and  are

both least upper bounds then  is less than , and  will be less than equal to , so  is equal

to  . That is anti-symmetry is used here. Then least upper bound would be unique. So, we

will call it the supremum of , and denote it by . Similarly, the terms `lower bound'

`greatest lower bound' i.e., infimum etc are defined.

So, all these concepts we are using here and we have been using in the study of real numbers,

the  same  definition,  same  thing.  Only  thing  is,  in  real  numbers,  there  will  be  addition,

subtraction, multiplication. Nothing of that sort will be used here. They are just arbitrary sets.

How far you can go, what analysis you can do, what topology you can do with just putting an

order on a set? That is the topic here today.
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A poset is called a linear ordered set or a total ordered set, both the terms are used, if given

any two elements  and  inside , we must have  is less than equal to  or  is less than 

or equal to  . Of course   equal  to   is also allowed. So you can say there is a Law of

trichotomy. Of course, by anti-symmetry, if both   is less than equal to   and   less than

equal to , then we have  equal to . 

An element   inside   is called maximal if   is less than equal to  , for some   inside  

implies  is equal to . 

So, take any partial order set, maybe you take a partial order set and take a subset of that with

the induced partial order, restricted partial order. Then you can talk about maximal elements

inside that. So, this is just similar to supremum and so on. Maximal elements here, by the

way, in an arbitrary partial order need not be unique.

Of course, with a linear order or a total order, maximal element is unique. That is a different

thing. A maximal element means what? If anything is bigger than that, it must be equal to

that. 
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A poset   is  called  well-ordered  if  every  non  empty  subset   in  it  is  bounded  below,

(suppose, you take any non empty subset which is bounded below, that is not the case, every

non empty subset must be bounded below) and the infimum of   exists, and that infimum

must be inside .

So, this is the definition of well order. This a very strong condition. Simple example of well

ordered set (apart from any totally ordered finite set) is the set of natural number with the

standard order. 

For given any subset of natural  numbers,  has one number which is  the smallest.  So, that

property has been generalized here. So, natural numbers are also totally ordered, but being

well ordered is something more. Automatically, it will be total ordered. Why? Take any two

elements  and . That is a subset. That subset must have an infimum. That infimum must be

inside that. That means infimum is one of the elements,  or .

If it is  , then  will be less than or equal to . If it is  , then  is less than equal to . So,

automatically a well order is a total order. A total order may not be well ordered. Just, you

can take the example of all integers. Subsets may not have an an infimum, which we know.
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A subset  of a totally ordered set  is called an initial segment (so just pay attention to this

definition) in , if you have  inside  such that  is the set of all elements  in  which are

less than  or  is the set of all  in , such that  less than or equal to . So, see, this may

not include  , but it is possible that this   includes   also. So, there are the two different

cases. So, both of them are called initial segment the first one may be called open initial

segment and the second one a closed initial segment. Just like the closed ray  or the

open ray  inside . So, these are the standard examples. Following result is one of the

most useful  results  from set theory, and it is equivalent to axioms choice.  We take it  for

granted. What is this? Zorn’s Lemma.
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So, Zorn’s Lemma states the following. 

Take any partially ordered set , non empty. Suppose every linearly ordered subset of  has

an upper bound in . Then,  has a maximal element. Every linearly ordered subset, every

totally ordered subset of  , means what? The subset with the restricted order that must be

linearly ordered.

If each a linear ordered subset has an upper bound, then   has a maximal element. There

may be many maximal elements.  is just a poset. A totally ordered set may have only one

maximal element it at all. Note that the lemma does not assert any uniqueness about such

maximal elements. It is very important. 
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Using Zorn’s Lemma, we can easily prove, Zermelo’s, axiom, another very important the-

orem in set theory. We call it an axiom: 

Every set  can be well ordered. 

We have just seen the set of integers is not well ordered, if you take the usual order. So, what

does Zermelo's axiom says? There is another order on the integers in which it will be well

ordered, it assures the existence of some partial order which will be a total order that is the

meaning of this one.



To prove this one, you can do it independently of Zorn's lemma, but you will have to use

axiom of choice. That has to be there. There can be no really `independent proof' because

these  statements  Zorn’s  Lemma and Zermelo's  axiom,  each  of  them is  equivalent  to  the

axiom of choice. So, we are assuming this one which just means that we are assuming axiom

of choice in the background.

But now, what we will  do? We will  prove this one,  we will  use Zorn's  lemma to prove

Zermelo. So, that way, our task will be simpler. How do we do that? In order to apply Zorn’s

Lemma, you have to have some family of ordered sets and so on. Then you say something is

maximal and that maximal element may satisfy whatever you wanted. 

So, I start with a family  of all ordered pairs ( , a partial order), where  is a non empty

subset of  where  itself is non empty. Two elements of  may have the same subset of 

but if the well order on them are different they will be different elements of . 

Why this  is non empty? Because singleton sets can be given only one partial order and that

partial order is automatically well ordered. And they are all elements of  . Therefore,   is

non empty. (Note that here, I am assuming  non empty. I do not worry about non empty

subsets of an empty set.) Now on , we will put a partial order as follows.

What is that partial order?   (I will read it as , or we can read it as 

precedes ) if and only if 

(i)  maybe equal to  along with, along with what? The partial orders are also the same,

 Or

(ii)  is an initial segment of , with  when restricted to . 

So, that is the condition.

First we show that  is a poset. What are the things that you have to verify? What are the

members of ?

 So, reflexivity is there because of (i). Transitivity is also obvious because if we have  

precedes  precedes  then there may an equality somewhere, that case is fine, or if they

are initial segments, then the element is  which defines  as an initial segment will also

define  as an initial element in . Details are left to you as an exercise. (Do that one, you



have to spend some time in doing this exercise by yourself so that you get familiar with these

definitions.)
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Next, I have to show that the condition in Zorn's lemma is satisfied. Take a linearly ordered

subset   of this  .  I  will  show that this has an upper bound in  .   After that,  we can

conclude that there is a maximal element here in  and that maximal element is going to give

you whatever we want, namely a well order on . 

So, let us see how. Start with a linear ordered subset  . Put   equal to union of all these

members inside this . Remember what the members of , , where  is a subset of 

and   is a total order, a linear order on  . You take   to be the union of all  , such that

 belongs to . Then  is a subset of . Now, if you take any two elements  in ,

there will be one  belonging to  such that both of them are in . Why? Because  may be

in  and  may be inside some . But because  is linearly ordered, we have  is a subset of

 or the other way round. Therefore, you can take the bigger one that will contain both  and

. 

So there is   for which both   are inside  . Now, you define the new relation on  ,

which we denote by , as follows. How I am going to define?    if and only if  is less

than or equal to  inside . This makes sense because  and  are members of . Now you

have to see that this is well- defined, viz., it does not depend upon what  has been chosen.

If I have chosen some , such that  are in , then  is an initial segment of  or  is

an initial segment of   which means this relation will be the same as far as   and   are



concerned. That is why this is well defined. Automatically, this new realtion  is a partial

order on . 

So, what we have to show is that it is well order on . (That it is a total order is obvious from

the way we have just defined it.) Then it would follow that  is member of  And then we

have to show that this member is an upper bound for all the elements inside this . So, quite a

bit of work to do.
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So, we claim that  is a well order. What does that mean? Take any non empty subset 

of , show that it has an infimum, a minimum.  must have a non empty intersection with

one of the members of  because  is a union of all members of  as a subset of . S0, there

is some  in  such that  is non empty. Then  must have minimum. Let us say

it is . This  is an infimum of  inside  and it belongs to . We claim that  is

the infimum for the entire  inside . So, that is what we want to show. Once we show that,

well orderness of  is proved.
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So, here is the proof. Take any element  inside . Say  must be inside some  belonging

to . Because all elements of  are, all members of . Since  is totally ordered, we have 

is precedes  or  is precedes , or  maybe equal to . In the last case, obviously, we

have  precedes .

So, we shall assume that  is not equal to . Now, there are two different cases, either 

precedes  or  precedes . 

Suppose  precedes . Now, there are two subcases again. Because  is not equal to ,

either  is  an open ray in , open initial segment or a closed initial segment, so there is a 

in  which defines  as an initial segement. Now, if  is less than , (or less than or equal

to , respectively) in , then by the definition,  is inside . t is least amongst all elements



of , therefore  is less than (or less than or equal, respectively) to  in . In either case,

(viz., whether  is an open ray or a closed ray), it follows that .    

Now, in second case is  is less than or equal to  because  is less than equal to , but then 

will be less than equal to  less than equal to . So it follows that  is less than .

Now, the second case is  the other way around viz.,   precedes  . Then it  follows that

 is a subset of . It may equal also, I do not care.

And hence  will be less than or equal to  also, because for all these elements,  is smallest.

But again, . 

So, in all these cases, you have shown that  for all , no restrictions on  etc.

now. So, this means that  is well ordered.
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Now, we shall prove that this  is an upper bound for .  

So far it  is well  ordered, and is a member of  .  Now, why is it  the upper bound for all

members of ? Start with a member  of . Then for  and  inside , we have  less than

or equal to   in  , if and only if   is less than or equal to   by the definition of this  .

Therefore, one thing is clear. Namely, the order on each subset  is fine. We have to show

that this  less than equal to . 

First, suppose  is the whole of  as a set. Then clearly, these two are orders are also equal

and so  is equal to  as posets. 



Now suppose  is not the whole of , it is a proper subset of . That means there must be

 inside this  , such that   is not equal to   but contained inside  . If everything is

contained inside , then the union will be  which is . So, that is not the case now. So, 

is contained inside , but not equal.

Therefore,  precedes , because Gamma is totally ordered. See  cannot be a subset of

. So, we must have   precedes  . Therefore,   is an initial segment, either open or

closed, does not matter, it is the initial segment of  . Therefore, it is initial segment in  

also. Same element   will have the required property. So, we have proved that every  in

Gamma is an initial segment of  and hence  precede .

So, in either case  is an upper bound for . 
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So, far what we have proved that conditions for the Zorn’s Lemma are satisfied. Therefore,

there is a maximal element  in . What is the meaning of this? This means  is a subset

of  and this  is a well order on  and if there is another  in  then that cannot be

follow this one,  cannot precede . This is a maximal element of . So, that is the meaning

of maximal element.

So, now, we claim that this, the underlying set  is the whole of . That will complete the

proof of the theorem, viz., we have found a partial order on the given set  which is a well

order.  



Suppose  is a proper subset of . We can pick up some element  inside the complement of

, put  equal to  disjoint union . That means one extra element. And extend the well

order on  to  by declaring the only thing that we have to have, viz., how  is related with

elements of , so declare y less than  for all  inside . This way,  becomes a poset. It is

automatically well ordered because if a subset   is already inside  , it is well ordered by

itself. If not it will contain , but  is largest. So the minimal element of  gives you the

minimal element for  , if this in nonempty. Finally, if you have just singleton  , then that

singleton  itself is the minimal element. 

Therefore, this is a well order. Now, what we have got?  is a well ordered set and hence is a

member of  .  But   precedes   since   is  an open initial  segment of  .  And that is  a

contradiction, because we assumed   is a maximal element of  . This contradiction arose

because we assumed  is a proper subset of . If  is , there is no problem. 

So, that completes the proof of Zermelo’s axiom. Here we have made it a theorem, namely,

every set can be well ordered.
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As I told you the original proof of Zermelo’s which was proved 1904, more than 100 years

now, 120 years,  is  directly from axiom of choice and is certainly more complicated.  The

above proof is simple and short, because we have directly used Zorn’s Lemma and not so

obvious fact that axiom of choice is equivalent to Zorn’s Lemma. If you try to prove Zorn’s

Lemma using the axiom of choice that will be again a horrendous task. So, we have avoided

that.
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Next  Ɵme,  we will  do  another  important  landmark  result  in  set  theory,  principle  of  transfinite

inducƟon. Thank you.


