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Hello.  Welcome to NPTEL NOC, an introductory course on Point-Set-Topology, Part  II.

Today, we will have the last section on the dimension theory, module 44, Local Separation to

Global Separation. Recall that our study of dimension theory began, actually, in the previous

chapter with a discussion of separation properties, which we have named S0 to SIII.

Keeping in mind that we are going to restrict the class of topological spaces for those which

are separable and metrizable, and in particular , we have pointed out earlier that SI, SII and

SIII are some stronger forms of Hausdorffness, regularity and normality, respectively. We

may call this itself the first step in the passage from local to global. 
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Moreover, the passage from  SI to SIII, (there is one SII in between), itself can be viewed as a

passage from atom to mass, atomic to aggregate or whatever you want to say, mini scale to

larger-scale and so on, a kind of local to global. It is also a passage from local to global.

Recall that one of the first few results that we proved in the previous chapter is that Lindelof

plus SII implies SIII. So, that made SII our central object of study. 
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Next,  in this chapter,  we adopted SII  to  represent  -dimensionality  and then inductively,

obtained its higher dimensional versions to define higher dimensional manifolds. Then came

the theorem 9.13 and 9.15, which you may term as another step toward globalization. Let me

just show you these steps.
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This was the theorem. If  we have a subspace of a separate  metrizable  space then   has

dimension less than or equal to  if and only if, given any closed subset  of  and a point

outside, there is a closed subset   of   such that dimension of   is less than or equal to

 and  is equal to ,  and  are both open and closed subset disjoint, with 

inside  and  inside . So, we have pointed out that in the case of n equal to , dimension

of  is  means  is empty set. This is precisely the condition SII. 
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So, similarly, theorem 9.15, you can also do similar interpretation. I just wanted to show you

one of them here. If   is metrizable space and  is a subspace of that, dimension of  is

less than or equal to  if and only if, for every point be inside , something happens. Now I

am putting conditions on points of  all together. You see, I am getting condition like that,



condition for dimension of   to be less than or equal to  . What is the relation between

points inside   and the subspace having dimension less than or equal to  . So that step is

again another step towards globalization. This is what we meant. So, let us go back to what

we were doing today. 
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So, as the inventors have termed it, the success of the concept of this theory of dimension,

(why  I  am  calling  this  a  theory,  because  there  are  other  theories  also),  things  upon

successfully  strengthening the passage  from local  to  global.  This is  the topic  of  this last

section,  wherein  we  shall  be  able  to  reach  our  goal,  the  final  goal  of  proving  that  the

topological dimension of the Euclidean space  is actually equal to . So, that I call it as a

success of the theory. (Refer Slide Time: 05:38)



Here is the next step in the passage from local to global. So, we have to prove all these things

now. 

Let  be any separable metric space, and  be a subset of  of dimension . Given any two

disjoint closed subsets  and , there exists a closed subset   of  separating  and 

such that  is empty.

The subsets   and   are disjoint closed subsets. By normality, you can separate them by

open sets. That is a different aspect. Of course, that will be the starting point in the proof of

this. What we are going to do is there is a separation by a closed subset   which does not

intersect   at all. So, this you can call it really the crunching fact.  Of course, we have to

improve on this also of the separation properties being globalized, for globalization property. 
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So, let us start the proof of this. We have to produce a closed subset  of , i.e., contained in

the complement of , such that when you throw away this , viz., , can be written as a

disjoint union of open sets  and , with  contained inside , and  contained inside .

That is the meaning of separation of  separates  and . 

First, choose open sets  and , such that  is empty and  are inside . So,

this step just uses the metric space property here, normal, normal property or metric space.

Once you have these  and , look at their intersection with . In fact take . These

will be disjoint subsets of   and  is of dimension . So, apply the SII property there. We



have  equal to  here,  is inside  for . So, that is the property for a -

dimensional set. 
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Now, you enlarge this  and , along with , put ,  equal to  and .  are

subsets of ,  are subsets of the larger space .  is closed inside , but  itself is not

closed inside  .  So, there is  some problem here.  Otherwise,   would have been easily,

closed subsets. 

So, we should show that  and  are mutually separated sets (next best to saying disjoint

closed subsets, but enough for our purpose). So, I mean they are not closed subset but  

does not intersect  and  does not intersect . So, mutually separated subsets. So, which

is slightly weaker hypothesis than having disjoint closed subset, disjoint closed subset are

easy to separate, but this is only a little more difficult. So, for here, we will need more than

normality, namely complete normality, which is there since we are working in a metric space.

Wait a minute, so let us solve this one now, Namely   is empty? Indeed, once you

prove this one, the other one is symmetric. All these conditions are symmetric in . So

the proof of  is empty would be similar.  
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So, once you can use complete normality of the metric space, it follows that we get open

subset  in  such that at  is inside , and closure of  does not intersect , which is

same thing as having disjoint  closed subset and so on. This way, it  is  easier  to  state:  

contained in  and closure of  does not intersect .

You can then take  as the boundary of . Automatically boundary of  is closed. So, this

 is a closed subset, which will separate   and . Because  will be contained inside W

and does not intersect ,  does not intersect  because it does not intersect  at all. So,  

are inside complement of .

If you take   union complement of   that will be precisely equal to the whole   minus

boundary of  i.e., . 



Moreover,  is empty, Why? This I have not yet shown. What I have shown  and 

are disjoint from boundary of  .  We want to ensure that   is  empty. But   is

contained in boundary of   union boundary of  , because this entire   being

 is contained in  . But both of them are empty. Just now we shown that. So

 is empty. 

So, this  will serve the purpose.
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So, we have yet to prove that   and   are mutually separated.  So, here is the schematic

picture of what is happening. Started with  and  which are disjoint closed subsets, shown

by these ellipses, we enclose them in open subsets  and  where closure of  and closure

of  are disjoint. This is my  which is of dimension . That is why I have shown it with

dot dot dots here.

Intersect  with  so that, you get two disjoint closed subsets . One is from here to here.

Similarly, another from here to here. So, they are disjoint closed subsets of  . So, you can

separate them by  and  shown by dotted ellipses. Note that  and  may go out of 

and . 

After all open subsets of  are nothing but open subsets of  intesected with. So, that is what

I have shown here. 

Then I put   equal to   up till here and   equal to   up till here. I have to

show that  they are mutually  separated.  In the picture,  it  is obvious.  You can not use the



picture to prove a theorem. You can take the help, but finally everything should be purely

logical.

And finally, what we want is this green rectangle thing  , such that it contains   and its

closure  does  not  intersect  .  And  if  you  throw  away  its  boundary  from  ,  you  get  a

separation. So, let us prove that  and  are mutually separated. 
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So, let us do that. So, it remains to prove (31). (31) is what?  is empty. The other one

is similar. So, by symmetry it is enough to prove that  is empty. 

First of all,  itself is , therefore , (bar denotes the closures in the whole space ),

 is , because it is just a finite union. 

But  is already closed in . So, it is . Therefore, it is enough to check that 

and  are empty. So, this is the first step. I have to show these two things one by one.

So, let us see.

Now  is inside , because by the very choice  ,   is an open subset containing in .

Hence   which  is  contained  in  .  But   is  contained  in   by  (30).

Therefore,  is contained in  which is empty.

So,  is equal to ,  has two parts, both the parts intersection

with  are empty and therefore, we conclude that  is empty. 
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Next to show that  is empty. So, how do you show? For each  belonging to , we

shall produce a neighborhood  of  which does not meet . Then it follows that the

point is not in the closure of .

If  is inside , (there are two parts to , one is  and other is , we are taking the two

cases separately),  you can just take  equal to whole of this . And then  which is

contained  inside  ,  that  is  contained  inside  ,  and  hence   is  ,

which is contained in . That is empty. 

If  is in , then what do I do? Note  is an open subset of , being one part of a separation

of  . So, we get an open set   in   such that   is equal to  . Then what happens?

 is  which is equal to  and that is empty. 

And that completes the proof.
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Now, we can state a more pliable statement and easy to remember statement. Start with any

separable metric space , take a subset  of dimension less than or equal to , where  itself

is finite. (Of course, I assume that  bigger than equal to  because, if  is empty there is no

statement. Those things we have seen already.) So, given any two disjoint closed subsets 

and  of , there exists a closed subset   of  separating  and  such that the subset

 has dimension less than equal to . 

So, from the case when  is of dimension , we have come to arbitrary dimension here now.

So, how will you do that. Of course, since  is a metric space, there exists open subsets 

and  such that ’s are inside  equal to  and , and intersection  and  is empty.

This is from the normality of  because  and  are disjoint closed subsets. 

Now, suppose  is   (this  is between  and infinity). So,  is  , there are two cases to be

handled. If   is empty, in which case you can take  equal to complement of  union .

that is a closed subset. And then  is just the disjoint union of  and . Over. 

If   is non empty, dimension of  is , in which case, the earlier lemma which we did just

now, that gives the required result. 
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Now we  have  the  inductive  hypothesis,  where  we suppose   is  bigger  than  .  Using  a

previous corollary, we can write  as a union of two subsets  and , where dimension of 

is less than or equal to  and dimension of  is less than equal to . This is one of the

theorems that we have derived last time. Now, you use the above Lemma to get a closed

subset  ,  which  separates   and   such that   is  empty.  I  do not  know what  is

happening intersection with  , we will come to that later, but intersection with   part  is

empty. That is the starting point. 

But then look at . That will be now contained inside .  is of dimension less than or

equal to . So,  is also of dimension less than equal to . over. 

So, this after the hard work in the above lemma, this comes quite easily. Why? Of course I

have to use this crucial thing here, namely anything which is of dimension n can be written as

a union of two subsets, one is dimension , another one is 0. 

Here is a theorem. 
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Now in the above theorem (well, this was not a theorem, it is a proposition, does not matter),

take  is equal to . Then what do I get? Let  be of dimension less than equal to . Then

any two disjoint closed subsets can be separated by a closed subset of dimension less than or

equal to . (There is no question of intersecting with  because  is the whole space .)
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Now, we want to improve upon that one. Let  be of dimension less than or equal to  and

 and similarly  be pairwise disjoint closed subsets,  is empty for

each  .  How  many  are  there?   of  them.  This  then,  there  exist  closed  subsets

 such that each  separates  and , and intersection of all the 's, 

ranging from  to  is empty.



So, how do we get this one? This is also easy. From the previous theorem, applied to  and

, you get a closed set , which separates  and , such that dimension of  is less than

or equal to . Now, use the proposition, not the theorem, we get a closed subsets  of 

again, separating   and , such that when you intersect   with  , its dimension is less

than or equal to , because you already dimension of  is less than or equal to . 

Now, you keep on doing this, you repeat this step, get a  such that it separates  and ,

with dimension of  is less that or equal to . How far you can go till you

get   that is empty. (So, you have to have dimension less than or equal to   here and

there must be  then only you will actually handle  pairs of disjoint closed sets.)  
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Now, we are very close to the end here.  Consider  the rectangular box   closed interval

 contained  inside  .  Suppose  you  denote  by   the  faces  of  ,  defined  by

equations   equal  to  .  (For  ,  this  is  nothing  but   and

. If , there will be four faces, two pairs of opposite faces. So, that is the way

you have to take these faces, defined by the equations: the -coordinate  equal to . For

, there are  pairs here.)

Suppose  is a closed subset of  which separates the opposite faces  and , which just

means that when you throw away  from , you get two disjoint open subsets , each of

them containing either  or , that is a separation. Then we want to show that intersection

of all 's is non empty. 



So, together these two results are going to imply a big theorem for us. However, the proof of

this is now based on something different that we did last time, namely, Brouwer's fixed point

theorem comes here. Let us see how. Pay attention to the method of proof because that can be

used in several other places. 

Let  denote the Euclidean distance function in . For each  in , (I have already told you

what are  here, the open subset containing , and this  is containing .) 

For  belongs to , let  be the foot of the perpendicular from  to . So, move

all the way to  from the point  in . Do not change the  coordinate, the  and 

have the same   coordinate.  That  line is  perpendicular to the hyperplane containing C_i

^minus.  It is an elementary observation that distance between   and  , (  is the set that

separates  is less than or equal to distance between  and  and this distance is actually

equal to distance between  and . Why? Because  is the foot of the perpendicular from .

And what is this distance? It is equal to  plus the  coordinate of . So, what I have proved

by this? Distance between  and  is less than or equal to , for every .  So, very

easy to remember. Let me justify this with a small picture here, for . 
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So, this is . This is square. And this is , this is , this is , and this is

. This is my  which separates  and . Take a point  in , take its projection onto

this plane. So, here it is just a segment parallel to -axis. What is this?  coordinate will not

change.



What is its  -coordinate? i.e., the   coordinate of this point   is equal to the distance of  

from  and that is the same thing as the distance between  and , which is bigger than

distance between   and  . That  is  precisely what we are claiming, more generally,  that

distance between  and  is less than . Similarly for  in , we have  .
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Now, I define a function here for each  between  and , let  from  to  be as follows: If

 is  in  , just  take   equal  to the distance between   and  . This is  a continuous

function on , we know that. What is this? This is the minimum of distance between  and

, where  runs over .

If  is in , you put , a minus sign in this case.  

Finally, if  is in , put . Look at this one. As  tends to a point in ,  tends

to  in both cases, because  is the common boundary of . It follows that  is continuous

on the whole of . 

Now, you combine these two inequations here, inequalities, what you conclude is that  is

always less  than or  equal  to   is  always less  than or  equal  to  .  There  are  two

different cases you may have to work, you have to work on. This is very easy.
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So,   is  between   and  .  Therefore  if  I  define,   equal  to

 and   equal to  , then what happens? Both   and   a

function taking values inside , but  will be taking function inside . It will be always

between  and , all the coordinates. So, obviously, both of them are continuous.

Therefore,  you have  got a function   from the closed rectangle   to  .  We can apply

Brouwer's fixed point theorem to . So, we get a point  such that . What does

that mean? .  for all . What does that mean?  must be inside each of these

's. Which means,  is in the intersection of all 's.
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So, this theorem is proved now. As I told you now, you can combine this with the previous

theorem, to get a wonderful result now, namely. Dimension of  has to be equal to .

Let me go through this one. It is not so clear. If not what happens? Dimension of  is less

than or equal to . We know that, this part we have already proved, dimension for  is one

and by the product theorem, dimension of   is  less than or equal  to  .  That  is  already

proved.

So if it is not equal to , then the dimension must be less than or equal to . As soon as

you see  , by our theorem 9.38, whatever we have proved today, means that, for each

,  there  exist   closed  subsets   which  separate   and  ,  such  that  the

intersection of all 's is empty. 

But Brouwer's fixed point theorem applied just now, in the previous theorem says this is non

empty. So that is the contradiction to this theorem 9.39. Therefore, dimension is tight, it has

to be equal to . 

 being larger space, containing  must also of dimension . 

So, we have proved that main result. Not only that, you can take now any non empty open

subset which is homeomorphic to some disc or   and so on, or any subset which contains

some such set, all of them will be of dimension  inside .
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So, here is a remark. Topological dimension, whatever you have defined, is a topological

invariant for the class of separable meterizable spaces. We have not defined it for arbitrary

spaces. That is one point you have to remember. 

Thus, we may also derive the following weaker form of Brouwer's Invariane of domain(BID).

So,  I  am  going,  I  am  going  to  give  that,  namely:   and  ,  if  ,  cannot  be

homeomorphic.

Because  we  have  just  shown  that  dimensions  of   is  ,  dimension  of   is  ,  but

dimension is a homeomorphism invariant. This is a weaker form of Brouwer’s invariance of

domain.

Of course, the actual Brouwer’s invariance of domain is the following: namely, take any two

non empty open subsets of  . Suppose, they are homeomorphic. Then, if one of them is

open, then the other one is also open. 

And that is why the name invariance of domain. The word domain was used more often than

just open subsets in the older days. So, being open was same thing as being a domain. And

that is an invariance. So, that is why it is called invariance of domain here. Unfortunately, we

are not able to touch this one. We have come very close, but there is still a big gap here. So,

the proof of this will take us much deeper into Dimension theory, which is beyond the scope

of this course.  
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The  original  proof  due  to  Brouwer  uses  another  topological  dimension  theory  namely

Lebesgue  covering  dimension.  In  modern  times,  it  is  fashionable  to  prove  this  using

homology theory. So, there are many proofs of this one, this great theorem, but a proof using

only simplicial approximation, (part of which is there in the book of Hurewicz and Wallman,

implicitly), you may see my book. 
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So, here is an easy exercise for you. Deduce 9.42 from 9.43. Namely this, I said, is a stronger

form I said. Why? So, you assume this a and prove this one. We have proved it using all our

result  in two different  chapters  which we developed so carefully.  But assuming this, you

prove this one. That is your exercise. So, next time, we will start a new topic. Thank you.


