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Hello, welcome to NPTEL NOC introductory course on Point-Set-Topology Part II, module

43. Today we will present a proof of Brouwer’s fixed point theorem which you may term as

an analytic proof. There are quite a few different proofs of this famous theorem. And this

proof is due to Milnor. You may have come across with the following classical and famous

result, which we call Brouwer’s fixed point theorem.

Every continuous function from a closed disk  to  has a fixed point.



Certainly, for , viz., if you take the closed interval , it is a familiar result to you

from  the  real  analysis  course.  Indeed,  it  is  an  easy  corollary  to  the  intermediate  value

theorem. Maybe you have done it. Any closed interval  to , if you have a continuous

function, then it has a fixed point.

The general version was proved by Brouwer using Lebesgue covering theory.  In modern

times it is fashionable to prove this using homology theory. You may find a proof of this

using simplicial approximation, in my book on Algebraic Topology, for example, or in the

NPTEL course on Algebraic Topology Part I.

Milnor gave a proof of this using just multi-variable Calculus and Stone-Weierstrass theorem.

In fact, Stone-Weierstrass theorem for functions defined on a closed and bounded subset of

 is much easier than the generalized Stone-Weierstrass theorem that we have proved.  So,

in this section, right now, we will present a proof which is a simplified version of Milnor’s

proof, and that is due to C. A. Rogers.
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In Hurewicz and Wallman book, which I am refer  to quite often, the authors also give a

completely elementary proof, quote unquote, of the Brouwer’s fixed point theorem. However,

the  word  elementary  should  not  be  confused  to  mean  easy.  Indeed,  the  concept  they

introduced in order to prove this theorem, namely triangulation, (they do not use the word

triangulation at all, but that is what they are doing), in an ad-hoc manner, is better left to to be

learnt properly in an algebraic topology course. That is one reason which we are not very

keen to present that proof here.



On the  way,  while  learning  Milnor’s  proof,  you  would  have  witnessed  inverse  function

theorem and Stone-Weierstrass theorem being applied. So, that is also another motivation.

So, both of these things, we have studied in this course itself. So, the main reason to include

this result, which is seemingly a diversion, is that it is going to play a key-role in the final

step toward our goal in dimension theory. So, that is why it is here.
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So, let us begin with earnest, this lemma, which gives you three equivalent conditions. All of

them are equivalent to the statement of (not the conclusion) Brouwer’s theorem.

(a) Every continuous (respectively, ) function  from  into  has a fixed point. 

(b) There is no continuous (respectively  ) function   from   into   (note that  the

codomain of the function has changed here, pay attention to that) such that  for all

. (Note that such a map  is called a retraction of the  to . We do not need

that word. But just for your information, I am telling you that.)

(c)  The third condition is  that  there is  no continuous (respectively,  )  function,   from

 to  such that  is  and  is , a constant for all .

(The third condition just says that the identity map of   is not homotopic (respectively

smoothly homotopic) to the constant function. 

So, in each of these statements,  I have put in the bracket . So, in fact, this way we

get one version in which you have taken  functions everywhere. Another version, in which

you have are taking just continuous functions. That is the meaning of this. These three are



equivalent  conditions.  Notice  that  (b)  and  (c)  are  negative  statements,  whereas  (a)  is  an

assertive one. So, that is the beauty of this approach here. So, what we will do is we will

prove that these three conditions are equivalent. Then, in order to prove (a) we can either

prove (b)  or  (c).  So, that is the whole idea.
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So, let us prove that (a) implies (b). Everywhere first, I am now going to take only continuous

functions. Then I will indicate what to do when you have a  functions. 

So, assume that every continuous function from  to  has a fixed point. Now, in order to

prove (b) we will assume (b) is not true and show that (a) is not true.

If (b) is  not true, ((b) itself is in a negation),  that means we have a retraction, namely, a

continuous function  from  into , which is identity on the boundary. Take that map,

compose it with this   which sends  to , anti-podal map. So, you are inside . Now

you go back to  by the inclusion map, that is all. What happens? This function will never

have any fixed point at all.

So, let , where  is from  to  is the inclusion map. If , first of all

means that the point  , has to be on the boundary because  . But for a

boundary point  is identity, i.e, . But then it is followed by  which takes  going to

. So, identity  goes to  here. So,  is , as well  that cannot happen. So, that is

all. 



So there are no fixed points for this composite function. So, that is a contradiction to (a). So

that means not (b) implies not (a), which means that (a) implies (b). 
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Now, I want to prove (b) implies (a). Suppose there is a map  from  into   such that

 is never equal to . Consider the unique line segment  to . See, these are vectors

inside . So, the line segment between two distinct point makes sense. But you take this line

segment, extend it in the direction from  to  till you hit the sphere .

So, you will get a unique point on . call it . So, why this makes sense? Because the

entire line segment is contained in the closed unit disk  . Maybe it is strictly inside the

unique disk. So, you will have to extend it. As soon as we extend it, because the entire line is

unbounded, it will have to hit the boundary somewhere and the boundary is the sphere. So,

this is just a geometric way of getting this function .



In olden days, that was enough for people to understand that  is continuous. Even today, I

can leave it as an exercise, but here because you may be seeing such things for the first time, 

I will give you a full proof of why  is continuous. Just because, this  is continuous. So, how

do  we  do  that?  Look  at  the  entire  line,  passing  through   and  .  So,  what  is  the

parameterization? It is , as  varies over the real numbers .

So,  this right-hand side is, they are all points inside this line. Now, we want a point on the

intersection of the sphere and the line and the should be beyond the line segment on the side

of the point . Maybe it is  itself, or beyond . Therefore, I have to take the non-positive root

of the quadratic equation in   to arrive at this point. Why quadratic equation? Norm of the

right-hand  side  must  be  equal  to  .  Norm squared  equal  to   will  give  you  a  quadratic

equation.

So, norm square, when you write, I am rewriting it this way. .

Here  is a short form for  , the vector  . You can check that. Here   is the

variable,  is fixed, therefore  is fixed, therefore  is fixed. So, this is a quadratic in  with

some coefficients ,  and the constant term is .

Now, where does  belong to?  is inside the closed ball . Therefore,  is less than or

equal to  . So   is less than or equal  to  . It  may be negative.  It  follows that the

discriminant of this quadratic is non-negative and identically zero, if and only if this  is

equal to . Not only that, identically  means the other one, this coefficient  must be also

.

 is  mean what?  and  are perpendicular to each other. So, therefore, what we have is,

norm of  will become norm of , which is bigger than , which is absurd. So,

therefore, the discriminant is strictly positive, and hence the two roots are continuous. So,

what  I  am  saying,  discriminant  is  non-negative  and  identically  zero  if  and  only  if  this

happens.



If this happens, there will be a problem. So it must be strictly positive. That means the 2 roots

are continuous functions of . Whenever something is  when the roots are equal and so on,

there  will  be  a  problem about  continuity,  which  root  is  chosen  and  so  on.  So,  here  the

discriminant is strictly positive. So there is no problem about that. So, continuity of the roots

follows. What we have to take? We have to take the non-positive root of this. And that will

give you the required solution, which is a continuous solution. So,  will be in terms of that,

because put that value , this right-hand side will be .
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So, here is the picture. (Proof is completed for many people by the picture itself.)   is

here,  is here, I am extending the line segment towards  to  and get . By chance, if

 is already on the boundary, that  is equal to . So, that is the beauty of this construction.

This   is serves as the required function  in our statement. That is the whole idea. So, we

have completed the proofs of (a) implies (b) and (b) implies (a). 

So, here again, what we have proved? Not (b) implies not (a). If there is a map like this, not

(a) implies not (b). Earlier, not (b) implies not (a), not (a) implies not (b), that is what we

have proved.
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Now equivalence of (b) and (c) are very easy. Look at this formula   ,

where  is on  and  is between  and . 

So,  is also between  and . So, this is an element of the closed disk,  is an element of

the boundary sphere.  times this one will make sense for all functions defined on . I am

just putting it equal to . On the other hand, if I know , I could have defined  by

this formula. 

So, this is the formula which you will use to define either side, if you know the other side. If 

is given as in (b) then   will be a continuous function as in (c). If   is continuous iff   is

continuous. continuous.  is always the constant .  is  iff  is of

course taking values in . Therefore,  will always take values in  and vice versa.

In  fact,  they are  analytic  functions.  Roots  of  a  polynomial  wherever,  they are  positively

defined, strictly defined, they are analytic functions. So, that will take care of that. Wherever

I have, so here also, alpha is also a smooth function,  is equal , is the inclusion map. So,

if this is , the composite , so, what we get?  will be  and so on.

So, you have  a retraction, iff  will satisfy that property viz., a homototy from the identity

map of   to a constant. Therefore, this one formula proves both (b) implies (c) and (c)

implies (b). 
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Now, comes the part wherein we take everywhere  functions. If this r is  then  is and

vice versa. So, there is no problem in (b) implies (c). Here what happens? If the original

function  viz.,   is  a   function,  these  roots  are  also   functions.  Infact  roots  always

analytic functions. Roots of a polynomial wherever, they are defined, strictly defined, they

are analytic functions.  is linear function and hence analytic. So, that will take care of that

and hence the composite function  will be a  function.

By the way, even if  you just  proof   case here,  you have to argue for  continuous case

separately,  they have to be done separately.  There is no other choice here.  One does not

imply the other. You have to do. both. Go through the whole thing separately, but that is easy

anyway.
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So, having prepared the ground for the general theorem now, the idea is to prove the smooth

version of (b) and then use Stone-Weierstrass to prove the continuous version of (a). You see,

you  know  this  theorem,  we  refer  to  it  like  that.  We  state  and  prove  these  two  things

separately, no confusion. So, there is no  function  from  to  such that  is equal

to  for all  belonging to . 

Now, this is an assertion. Earlier this was just a statement equivalent to two other statements.

Now, we are proving this one. So, what is the proof?
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Assuming that there is such a function, let us tentability put  . And for each

, let us put   equal to  . So, joining the identity map and  .

This can be rewritten as  and rewrite the last two terms as  because  is



. Just look at this formula. Each  is from  to  because  is from  to , 

is identity. This is line joining the two points, you see. So, it will, convexity of  will tell

you that is always inside . However, this difference  may go out also, you do not know

where its values are. 

So, this  is from  into  any way. Because I started with  as a smooth function, all these

are smooth functions. Now, let us have a notation here  , you know, be the open disk,

namely, set of all  points   for which  . For each fixed   inside  , take the total

derivative  of   at  the  point  ,  that  is  a  linear  map from   to  .  Note  that  the  total

derivative of  at any point is the identity map of  times the derivative of  at the point 

. This is always a linear map from  to .

So,  is identity plus . So, these derivatives are taken with respect to . You may

wonder what is happening to the variable . Note that  is frozen here, in the notation  which

is one single map for each .  

For each fixed  now, you look at the function  going to the determinant of this linear map,

, which is a linear map from  to  . So, you can talk about the determinant of

,  is fixed now, one linear map is there, look at the determinant, but  is there. So

the determinant of this identity plus some map , it will be a polynomial in  maybe of

possible degree . So  occurs in each entry here.

So,  this  is  a  polynomial  function.  Therefore,  if  I  define  the  function   from the  closed

interval  to  by taking the integral of this function determinant of , integrated

on the entire  of  this open ball  .  Remember that this function is  a continuous function

because we started a  function and then we have taken one derivative, so, derivative is a

continuous function. So this is just ordinary Riemann integration, an iterated integral, you

may say.

So, there is a variable  involved here. Therefore, this will become a polynomial in , because

integrand is a polynomial in  . This polynomial, we are going to show that, is a constant

function. What is that? Integral of the determinant function with respect to  , is a constant

function  of  .  Then  we will  compute   and   separately  and  show that  they  are



unequal.  That  is  a  contradiction.  You  started  with  some  assumption  and  arrived  at  a

contradiction, so the assumption must be wrong. That means there is no such function . So

that will complete the proof. So, now we have to compute  and .
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So, first claim is, there exists  such that this  is injective for all  between  and 

Look at  ,  you have no control  what  is  ?   is  just  .  There,  you are  lucky.  It  is

injective. So, we now say that there is some positive , there is an interval of positive length

 here in which  is injective for all . Look at the function  from  to , this is a 

map.  Therefore,  there  is  a  constant   positive  such  that  this  condition  holds,  viz.,

.  This  is  true because   is  compact,  and   is  .  So,  we

looked at the derivative, take the maximum of the derivative, its norm can be taken as , that



is  the  general  statement  here.  This  is  some  calculus.  Now,  suppose   and

. Remember, we have this formula right?  is   Therefore, that

will  imply  that   is  equal  to   because  .  But  then,

 will be less than  times norm of this, where  some positive constant in . And

Norm of this one is less than .

But  then,  these  two numbers  are  the  same  here.  And there  ,  This  is  a  non-zero

number. Non-zero number is less than or equal to some number   times the same number

means this  must be bigger than . Once it is bigger than , I can choose  as . And then

for , we will, now have this. That is all. So, this inequality, this can happen only beyond

this , that is why we take something less than equal to  this will never happen. That means

that  is injective.

(Refer Slide Time: 30:36)



Now, let us go ahead. We claim that there exist a  now, another constant, in the half open

interval , this time we do not want to go beyond of , such that this function  from 

to  on the open disk, is a diffeomorphism, for all  belonging to . So, this is a claim

now. It may not happen for all  .  Once you have found such a  ,  then you can

actually take  also equal to . So, you have to find such a , which is positive that is the

whole idea. 

Now, look at  which we have seen is the identity of  plus . Therefore, it

follows that there is a  belonging to , such that the determinant of  is positive

for all  Then I choose  such that the determinant of  is positive for

all  .  Because  when  you  put  ,  what  is  the  determinant  of  ?  It  is

determinant of the identity map, which is , by continuity of the derivative, as a function of ,

determinant of  must be positive in a small interval around . 

Now, assume that  belongs to [ . (Now,  has been chosen. So, I say, this is good enough

for getting the diffeomorphism.) Put  equal to  of . Remember  is just a smooth map

from   to  , but we want to say that  the image of the interior  of  ,  viz.,   is

contained in . Why? Because .  the convex combination of  with 

belong less than . 

 



By inverse function theorem,   from  to   is an open mapping. This is very important

here. It is an open mapping into the whole of . By step I,  is injective also, because now

we are taking  to be less than . 

So, it remains to prove that  is equal to whole of . That is only thing which we need to

say that  is a diffeomorphism. So far what we have observed is that it is injective and open

mapping, with the determinant of its derivative being positive. And so it is diffeomorphism

onto . So, if we show  is actually , you are done. 

Suppose  is not equal to the whole of , we have already observed that  is inside .

So, if  some open subset  is  not  the whole space,  then,  there is  a  point   which is in the

boundary of  but is inside . (  is after all convex set. So, you can take a point inside 

and a point in  , the line segment joining them will intersect the boundary of   in

some point. You take that point to be .) Therefore, you can have a sequence  inside 

such that  tends to .

Passing to a subsequence, if necessary, we can assume that   itself converges to some

point  inside  because  is compact. But then  is the limit of  which is equal

to . Because  is a smooth function actually, so it is continuous also.

If  is inside  then this means  is inside  which is open. But we have  in the boundary

of . So  is not in . So,  must be in . But then  which is inside .

That is absurd. Therefore,  is equal to . 

 

So, in two steps, we have proved that we have located a positive number between  such

that for all points  less than that  is diffeomorphism from  onto .
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Now, we can conclude the lemma. Step two combined with a change of variable formula for

integration implies wherever  is a diffeomorphism for all those ,  must be the volume

of the whole of  (or of , they are the same). Why? Look at this integrand. This is the

determinant of . For , it is positive. 

So, whenever you have an invertible function, a diffeomorphism, you have the change of

variable formula. (So, we have used some good analysis here.) So, the volume of  is given

by   for  . But that is a constant. So, what is the meaning of this one? In this

nonempty open interval,  a polynomial function  is a constant. Therefore, this  must

be equal to volume of this  on the whole of , in fact wherever it makes sense.  



So, we have computed, in particular  which is the volume of . Now, we shall compute

 in a different way and see that it is a different value, and that is a contradiction. 

Look at  . That is equal to  which is in  for all points inside . Therefore, if

you look at  that is equal to . that is the same thing as saying  is of unit length.

Therefore, for any vector , if you take the derivative of this equation in the direction of

, you get twice  equal to .

The  directional  derivative  of  the  LHS  in  the  direction  of   is  nothing  but

. That is by the Leibniz rule. And that RHS is .

What does this mean? The entire image under this linear map,   from   to  , is

perpendicular to . All the directional derivatives are all perpendicular to . Therefore,

this  entire  linear  space  is  perpendicular  to  ,  it  is  contained  in  the  hyperplane

perpendicular  to  .  But  that  is  of  dimension  less  than  .  So,  this  implies  that  the

determinant of   must be zero, because its rank is   at most. It may be smaller

also,  I  do not  care.  This  happens for  all  .  Therefore,  the integral   will  be  ,

because on the right-hand side the integrand itself is  . Therefore   is  . Since   is a

constant, we get an absurd result that the volume of  is zero!

Now, I shall leave the proof of the continuous version version of the lemma to you as an

exercise, with the hint to use Stone-Weierstrass. 

(Refer Slide Time: 42:14)



Given any topological space   and homeomorphism phi from   to  , the conclusion of

lemma 9.31 is valid for any continuous function  from  to  also, instead of  functions

from  to . For, we take  equal to , from  to  and apply theorem lemma

9.31. So, what I have done is I have just proved the ,  version here. Now, you can apply

Weierstrass theorem to get the continuous version. 

As soon as any one of the three statements gets proved all the three statements get proved. In

particular Brouwer’s fixed point theorem, that is proved.

 

So, thank you.


