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Welcome to NPTEL NOC on Point-Set-Topology Part II, module 42. So, we will now do

some sum theorems for -dimensions. The spirit is similar to what we did last time. Only, we

are  continuing  getting  stronger  and  stronger  results  here.  A  countable  union  of  closed

subspaces of dimension less than or equal to  is of dimension less than equal to n. In other

words, taking countable union of closed subspaces does not increase the dimension. That is

what one has to understand. So, I have a number of subspaces, where are they? They are all

subspaces of a single separable metric space. 
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So, consider the following three statements . 

First  says that a countable union of closed subspaces of dimension less than or equal to 

is of dimension less than or equal to . This is just the statement of the above theorem which

we want to prove. But we will make some more subsidiary statements here.

 says that  a  countable union of   subspaces  of  dimension less  than equal  to   is  of

dimension less than equal  to  . From closed subspaces,  we have improved the statement

slightly,  to   subspace.   are  countable  union  of  closed  sets,  not  necessarily  closed

themselves. 

The third one   says any space of dimension less than or equal  to   is  a union of two

subspaces,  one  subspace  of  dimension less  than  equal  to   and  another  subspace  of

dimension . 

So, here nothing is said about the subspaces being closed, that is important here. 

I said that   looks like an improvement on . But it is not an improvement, they are the

same. Because each   is itself a countable union of closed sets, and then you are taking

countable union of 's so, that will be also a countable union of closed sets. 

So,  and  are easily seen to be equivalent, but  is a somewhat strange thing here. Let

us see what is the role of this  here. 
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We have to prove , by induction. How do we do this one? Here is a plan. We shall first

prove that  implies . Then we will use the induction hypothesis  and  to prove

. The statement   is only subsidiary here, it will play a subsidiary role. So, this is the

plan.

So, to begin with,  is completely obvious. If all spaces are of dimension minus less than

equal to , so, they are all empty, countable union of empty sets is again empty and hence is

of dimension . There is nothing to prove there. So, our induction starts at .

Also, we have earlier proved  itself. Remember that. I told you, today, we are not going to

prove  any  new  phenomenon  or  anything.  Same  phenomenon  we  are  using  for  higher

dimension and so on. 

So, countable union of closed subspaces of dimension  is of dimension . Actually less than

equal to dimension  is what we have proved earlier. Equality follows easily. I do not have to

actually prove this one because my induction starts with  and . 

So, we should now prove that  implies . Here, we are going to use separability of the

metric space that we are working in explicitly.
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Let  be of dimension less than equal to . That means there is a basis  for the topology on

 consisting of open sets  such that dimension of the boundary of  is less than equal to

 for all  inside . Since  is separable, we may assume that  is countable. So, this is

the role of separability here. So, I am just enumerating here .

Now, put  equal to boundary of . All of them have dimension less than equal to  by

the choice of  here. 

Now, the induction hypothesis  implies that you take  to be the union of all these 's,

that is of dimension less than . 

We claim that the complement of  in , namely dimension of  is less than or equal to

.

So, how would I prove that? Take  equals , this is just a temporary notation. And 

be the family of all . Clearly, because  is a subspace of ,  is a basis for , in

the subspace topology. And if you take  and its boundary in , that is contained in

the boundary of  in  intersected with . So it is just , and  are all empty.

Why? Because  is , all the 's have been thrown out.

So, it follows that the condition in earlier theorem is satisfied, namely, for . Therefore,

dimension of  is less than equal to . So, this is where we have used . So, since  is 

union , we get . 
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Now, it remains to prove  and  together implies . That will complete the proof of

the theorem. 

So, start with  as a union of countably many closed subspaces  where each  is closed

and dimension of each  is less than equal to . So, inductively,  let me define these 's: 

is ,  is ,  is , and so on. Throw away all the earlier sets 's from

 to get . 

Then

(1)  is union of 's also. This kind of things you have seen several times. 

(2)  is empty for all . This is the extra property we get, whereas that property is

not there for the family . By construction, our  and  will all be mutually disjoint.

(3) Each  is . Now, I cannot say that  is closed. Each  is  setminus some closed

set and so, it is an open subset inside a closed subset. All spaces are metric spaces here. Any

open subset of a metric space is . So, each  is .

This is where our  will play the role. That is all. 

(4) So, dimension of  is less than or equal to , because they are subspaces of . 

So, I have stating and explained these four properties of the family , (1) to (4).
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Now, we can apply  to each  because of (4). Write , where dimension of

 is less than  and dimension of  is less than or equal to . Put  equal to the union

of these 's, and  equal to union of 's. Since  are all mutually disjoint, for each ,

, so, each of them is  inside . Therefore, we can apply  which is the

same as  and conclude that dimension of  is less than or equal to .

Similarly, each of these   dimension  . Therefore, dimension of  ,   being a countable

union is less than equal to . From (1), it follows that  is . What is ?  Each  is

written as the union of  and , upon taking the union over , we get  is . From

9.16, whatever theorem, you conclude that dimension of  is less than equal to  now.

So, the inductive proof is completed. From a union of two subsets,  we have proved the same

thing for countable union. 

Next, we relax the condition of closedness.
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If  is a union of two subsets, each of them of dimension less than or equal to , and one of

them is closed, then dimension of  is less than equal to .

Same kind of result. Instead of dimension  , we are now working with dimension  . It is

similar to what we proved in 9.6. Convert the non closed set into a countable union. We do

not convert that itself, instead, take the compliment of  inside  and convert that. That is

all. So, the proof is similar to that one.

Now, a special case here. 
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If  is  union a singleton, and dimension of  is less than to , then dimension of  is

less than equal to . 



Of course here, you have to assume that  is non empty. This result is important only if 

is non empty after all.
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So, here is a remark now, on our famous and popular example Knaster-Kuratowski space ,

that is a subspace of . Remember that we have proved that it is a connected space. In any

case, being subsets of , it is of dimension less than equal to . 

Now, note that for each  , there exists an arbitrary small open rectangle   with sides

parallel to the coordinate axes such that the boundary of   is a  -dimensional space.

Remember how the Knaster-Kuratowski space is constructed.

There is this apex point . From there you are taking lines joining  to the points

inside the Cantor set. But those lines are all perforated. Either they consist only of rational

numbers or they consist only irrational numbers depending upon what point you are taking

inside the Cantor set. So, use that property to see that the boundary of any such rectangle

intersection  is -dimensional. 

Therefore,   is of dimension less than equal to  . Now, what are the possibilities for the

dimension?   is not possible because   is non empty. A -dimensional space (with more

than one point) cannot be connected. So, it is not -dimensional either. Hence, the dimension

of  is equal to .

Now, you apply this corollary with  equal to , namely, the space obtained by subtracting

the apex point  from .



We claim its dimension is . Why? First of all, dimension  is not possible because it is non

empty. If it is of dimension , then after adding this point , this will be also of dimension ,

which is not the case. Therefore, this must be already of dimension . 

However, what is this ? It is a totally disconnected space.

So,  that  is  some  surprise.  Quite  often,  people  mistakenly  think  that  totally  disconnected

spaces are of dimension . At least in our definition, it does not behave like that. The totally

disconnected spaces can be of higher dimension indeed. Examples of totally disconnected

spaces of dimension n for any finite n,  are also known, though, we are not going to discuss

these examples anyway.
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Another corollary: Take a subspace  of dimension less than equal to  of a space . Then

for every point   (note that I am making a statement about all points in   itself) has

arbitrary  small  neighborhoods  in  ,  whose  boundaries  have  intersection  with   of

dimension less than equal to .

The statement is obvious if   belongs to  . But this is now for all points inside   itself.

They  are  also  have  such  a  neighborhood.  Only  thing  is,  the  entire  boundary  of  these

neighbourhoods  may  not  be  of  dimension  less  than  or  equal  to  ,  but  only  the  part

intersected with  . For this, you have to apply the above corollary and theorem 9.15 to

, that is all.
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Thus, the above corollary is a direct generalization of 9.15. So, let me just recall this 9.15.

Because I have written, several times, I am referring to this one. See, this is what we had. The

global  characterization  of  a  subspace  in  terms  of  what  is  happening  inside   itself.

Dimension of  is less than equal to  if and only if for every point in , there are arbitrary

small neighborhoods   such that dimension of boundary of   intersected with   is less

than equal to . 

So, this  is  the theorem that  we have been using there.  For ready reference,  we state the

condition  as a corollary, because we have actually proved it right?  implies . and

we have proved  for all . 
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So, let us have that one because it is not just a subsidiary statement any more. So, let us state

it separately. What is it? 

Every (non empty) space   of dimension less than equal to   is the union of a space of

dimension  and a space or dimension less than equal to . 

Once again, if you take  to be an empty set,  this itself is of dimension , there is no space

of dimension . So, you may resolve this logical difficulty by assuming  to be non empty

or say that the statement is true vacuously.
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Repeated application of this is yields interesting result. Namely, if we have a separable metric

space of dimension less than equal to , (but this  must be finite, that is important, then and

then only) it is the union of  subspaces each of which is of dimension less than or equal

to . 

Next: Let   and   be any integers bigger than equal to  . Just put  . (It is a

definition of , that is all.) Given any separable metric space  of dimension less than equal

to , (that is, , that is all), there exists subspaces  such that  is union of  and

, dimension of this  is less than or equal to , dimension of  is less than or equal to .

This is the generalization of writing  as a union of  subspaces of dimension . You can

break the  into any way you like, a partition of  into , and then you will have this

theorem. So, how do you do that? That is not very difficult. You have to use this one cleverly,

inductively, viz., Theorem 9.26.



(Refer Slide Time: 23:45)

Finally, as an easy consequence of the above results, we shall prove the following. Now, we

have come to the products.   and  are separable metric spaces, at least one of them non-

empty. (If you assume both of them are non-empty, well, there will be some problem, you

will see. Suppose, one of them is non-empty, the other one is empty. What happens? The

product will be empty space. So, what is the statement?). Assume that they are both finite

dimensional. Then, the dimension of the product is less than equal to dimension of  plus the

dimension of .

So, if both of them are empty, what happens? The RHS wll be . But these always minus.

The statement is wrong because there is no space of dimenson less than or equal to .  Only

for that reason, we have to assume that at least one of them is non-empty, so that I get RHS is

at least . Suppose  is empty and  is non empty. The product is empty and the RHS is at

least . So that case will be take care of. 

So, we can assume that both of them are non empty also. We shall induct on dimension of 

plus dimension of   as usual. (The statement is obvious and is verified, if dimension of  

plus dimension of  is  already.)

So, assume that all spaces,  and  with this property viz., dimension of  plus dimension of

 is less than dimension of  plus dimension of , satisfy the theorem. 

So, this is the induction hypothesis. Having verified it for  , now, we are assuming that

dimension of   plus dimension of   is positive, and the statement is true for all pairs of



spaces  with  the  sum of  their  dimension  strictly  less  than  this.  So,  that  is  the  inductive

hypothesis.
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For any point  , there are arbitrary small neighborhoods,  , where 

are neighborhoods of  and  in  and  respectively such that dimension of the boundary of

 is less than or equal to dimension of  plus dimension of  minus . 

Now, what is boundary of ? You can take the closure here, boundary of  is same

thing as boundary of  . Then you will get the boundary to be  cross boundary of 

union boundary of   cross  . By induction hypothesis, each of them is of dimension less

than equal to dimension of  plus dimension of  minus .

Also, both of them are closed. Note that for each of them, only dimension of one of the

factors goes down by . In boundary  cross , the dimension of the first factor is one less

where as for  the dimension may be equal to that of . Also, both of them are closed. By,

Corollary 9.20 boundary of   is of dimension less than equal to dimesnion of   plus

dimension of  minus . So, the theorem is proved.
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Special  case.  If   is  -dimensional,  then  dimension  of   is  dimension  of   plus

dimension of , which is just dimension of . So, taking product with a -dimensional space

does not increase the dimension. 

As a special case, we only get dimension of  is less than or equal to dimension of .

But I have  is non-empty because it is a -dimensional, and for any point , we have 

homeomorohic to  which is sitting inside . Therefore, dimension of  is same

thing as dimension of   which is subspace of  , and hence dimension of   is

less than or equal to dimension of , which is of course, dimension of . So, equality

occurs.
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One  may  anticipate  that  the  above  statement  is  true  in  general  just  like  dimension  of

 is equal to  . So, it will be a nice thing. So, one may anticipate the above

statement  is  true.  So,  you  can  ask  this  question?  Is  the  dimension  of   equal  to

dimension of   plus dimension of  , in general? This is not the case, as soon as you take

some huge spaces. That is necessary but the meaning of huge is just respect to dimension

here, unfortunately. You do not have to go to infinite dimension. Infinite dimension, equality

holds automatically. It happens just with some spaces of dimension  itself.

So, what is an example? Example is our favorite example. Namely, , the space of all the

points with rational coordinates inside the Hilbet spaces  space. So, this is of dimension

. This is what we have proved earlier. But now, you can take   and show that it is

again isomorphic to   itself. By the obvious kind map: Begin with  ,

 (and interlace them), map it to . 

 In fact, you can use this trick to show that product of of any number of copies of  , any

number of finite number of copies, is again isomorphic to . So, this space is of dimension ,

but after taking the product the dimension not add up.

So, let us stop here. Next time, we will launch a program to prove that dimension of the

Euclidean space  is actually equal to . Thank you.


