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Hello,  welcome  to  NPTEL NOC,  an  introductory  course  on Point-Set  Topology,  part-II,

module 41, Dimension of Subspaces and Unions today. 

Take a subspace of , say . Let us have this notation, and , I read them as boundary

and boundary prime, respectively, denote the boundary a subset   of , with respect to 

and  respectively.



Then for any  inside , we have the boundary of , taken inside , that is a subset of

boundary of   without any decoration. This boundary just denotes the boundary inside the

larger space . So, this is an elementary result which you have seen in the first part itself, but

now it becomes very crucial, so let us go through it a little carefully. Take a point, which is

the boundary of , in the subspace , you start with that.
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Take an open set  of  such that  is inside . We know that  is a neighbourhood of

, and hence  intersects both  and its complement inside , because it is

the boundary point of .

Therefore, this  which contains  and hence has to be non-empty.

So, we have proved that starting with any open neighbourhood of  of  in ,   is non



empty. What else we have to prove? We have to prove that   also intersects  . Then it

would follows that   is a boundary point of  itself.  So what is the intersection of   with

 That contains  intersected with complement of  inside .

But the last set is . Therefore its intersection with  is non-empty as we

have seen. therefore it follows that  must be inside boundary of . 

So, one way inclusion is true. In fact equality hardly occurs unless  itself is contained in ,

or when  is itself is closed and, so on. So, all that we need is one way inclusion here, so we

will use this one heavily now.
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Every subspace  of a space of dimension less than or equal to . When you take subspaces,

dimension does not increase. So this is the theorem here now.

So, start with a base , for   such that dimension of the boundary of each member is less

than or equal to . That is the definition of dimension being less than equal to . Then,

we know that if you take  to be the family of all , as  ranges over  , that family is

a base for , because of subspace topology. By the lemma, we have boundary of ’ in

inside  is contained inside boundary of . 

Now, we induct on , if  is , this implies that boundary of  is empty for each  inside ,

therefore this  is also empty. So this proves statement of theorem for  equal to .



Inductively, assume that we have proved the statement for  . But then that means the

dimension of boundary of   is less than equal  to   for all  , because it  is

subspace of the corresponding  here. 
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Next theorem is: Let  be a subspace of a separable metric space. Any space for that matter.

 has dimension less than or equal to , if and only if given any closed subspace  of  and

a point   outside  , there is a closed subset   of   such that dimension of   is less than

equal to , and , a separation, with  inside  and  inside B.

Remember,  what is SII? SII says that a closed set and a point can be globally separated by

closed subsets. Now here we have something else, this is an extended SII. You may call it n

dimensional version of SII. So, dimension of   is less than equal to  , you cannot expect

closed sets and a point outside it to be separated by clopen sets, clopen sets means boundary

is empty. Now, on that boundary we are going to put some condition, so this is elaborately

stated in a different way here, you throw away a close subset of dimension , then you

have a separation.

When you have a clopen set, the boundary being empty played that role, that is why we did

not have to bother it. Now here, we have to throw away some close subset, of course away

from  and  and  you have to retain. So, ,  and  are both closed and

both open inside  and  is inside , and  is inside . So this is the generalized version

of SII now you see. So, this is equivalent to having dimension less than or equal to , just like

SII was equivalent to having dimension . Let us prove this one.
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Suppose  has dimension less than or equal to , with  and  as stated, means closed subset

and a point outside. Take the neighbourhood  of , which is complement of . By regularity

of , because  is a metric space after all, we get an open set  in  such that  is inside ,

and closure of   is  inside complement  of  ,  because   is  inside complement of  ,  and

complement of  is open. In between we have got this  and .

Since  the  dimension  is  less  than or  equal  to  ,  we get  an open  set   inside  this  ,  

belonging to  is containing side , such that now you take , what is ? I have to choose

 to be the boundary of . So, choose  such that  is of dimension less than or equal to

. So, this is the condition for   to be of dimension less than equal to . Now, look at

,  is a boundary of something, so it is a closed subset, so  is obviously union of

 and . Both of them are open, so both of them are closed in . Also  is inside

 and  is inside , because, because of what? the boundary  does not intersect .

 is contained inside complement of , and  is contained inside , so  is also contained

inside , so  is contained inside . 
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Conversely, starting with any point  and an open subset  such that  is inside , put 

equal to complement of  this time, so that  is closed subset and  is outside that. From the

given condition, we get a closed subset   of dimension less than equal to   such that

, with  is inside , and  is inside . This implies  is an open subset of ,

because   is  a closed subset of   and   is open inside  . And   is  inside  ,   is

contained inside , because it is disjoint from this , that is all. Also, boundary of  will be

contained inside  , and hence of dimension is less than equal to  . So, what we have

done? Starting with any point and an open set we have produced a smaller neighbourhood of

that point such that its boundary is of dimension less than . So, this just means that at

every point we have a local base for  consisting of elements members with their boundaries

of dimension less than or equal to . So that means that dimension of  is less than or

equal to . (Refer Slide Time: 12:54)



Now, it is convenient and useful to express the condition for a subspace X prime of space to

have dimension less than equal to n, purely in terms of some condition on larger space X. We

know what is the condition within the  space, viz.,  there is a base satisfying with blah, blah,

blah,  So, we can say that it is the generalized SII condition. So, let us convert that condition

purely in terms of X, so that  would be useful for us.

So, this lemma says: 

Start with a metric space . (This is a general lemma.) Let  be a subspace, suppose  and

 are subsets of   which are mutually separated in  . (Remember, mutually separated

means that  is empty, and  is empty. This time I am taking closures inside ,

because  there  are two spaces  involved here,  you do not  know where you are  taking the

closure if you just say closure of  or  and so on. I will use bar to denote the closures inside

, the standard one. For subsets of , I will use this notation closure prime.) 

Then there exists an open subset   in X such that   is contained inside   and   is

empty. 

So this is again a general result. While studying metric spaces, we have seen such proofs but

let me recall it, because now it becomes crucial.
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All that I have to do is use the metric properly. So, put  equal to union of all open balls

, where  range is inside  and a condition on , namely  does not intersection .



So, points of this , you know are far away from . Of course,  should be positive this

is just the definition of .

Similarly,  let   be the union of  ,   ranges  over  , same condition or   got  by

interchanging  and , viz.,  is empty. 

Then clearly both  and  are open subsets of . Because they are unions of open

balls.  It  suffices  to  show that,   is  inside  ,   is  empty.  Because,  by

symmetry,   is  inside   and that  is  open,  automatically  it  will  imply   is

empty. After that you can take . We want  to be an open set containing , such

that its closure in  does not intersect .

A set does not intersect an open neighbourhood around a set then its closure will not intersect

that set, that is all. 

So let us prove that   is inside  . We have not yet used the hypothesis. What is the

hypothesis?  and  are mutually separated, we have not used that one yet.

(Refer Slide Time: 17:24)



The basic observation we make here is the following. Let  be the metric  restricted to ,

(the same metric   on  , but points are taken inside  ), then for all  , and for all

positive , we have  the ball of radius  arond  in , that is the set of all  in , such

that  is less than , this ball is nothing but the standard ball in  around  intersected

with . I am just repeating the meaning of the restricted metric here.

Now,  intersection closure of  inside  is empty implies that for every , there exists

some   positive,  such  that  the  ball  of  radius   around   with respect  to   (everything

working inside  now) intersection  is empty. But then,  is ,

(because both  and  are inside ) and that is the same as the  which is empty.

So, for each a, you have got a positive  as above. This proves that  is contained in .

Interchanging  and , this also shown that  is contained in . 

Now, you have to prove that   is empty.and that is why we are taking only

balls of radius , but condition is on the ball of radius . So that the triangle inequality will

help you, that is all. So standard triangle inequality you have to employ.
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Suppose, you have a point in  both  and . That implies that this  is inside some

 as well as in   for some   and   positive numbers and   and   inside   and  

respectively. But then, distance between  and  is less than or equal to sum of the distances

from   to   and   to   which  is  will  be  less  than  .  Triangle  inequality  here.  But

 is empty, implies that  must be bigger than . So  is bigger than .

Similarly,   is empty implies  . That is absurd. There are different ways of

getting contradiction once you know that the triangle inequality has to be used here.
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Now, let us go to dimension theory. Let  contain . (Recall that now I am working with

separable metric spaces.) Then  has dimension less than equal to , if and only if for every

point   belonging to  , there exist arbitrary small neighbourhoods   of   in  , (I want



everything  inside   now)  such  that  dimension  of  the  boundary  of   taken  inside  

intersected with  is less than or equal to . 

(That is as far as you can go, everything trying to do only in terms of   is not possible,

somewhere  must be involved! Able to put it only at the last moment. Everything inside 

that is true if  is of dimension less than or equal . From that I have to get a neighbourhood

W of this point inside  with this property, so that is the gist of the theorem. 

First look at the converse which is easier.
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Anyway, assume that the given condition is satisfied, here. Let   belong to   and   be a

neighbourhood  of   in  .  Now,  every  neighbourhood  in   can  be  expanded  to  a

neighbourhood of the point inside the larger space. By the definition of subspace topology,

we get neighbourhood  of  in  such that  is .

Then  by  the  given  condition,  we  get  a  smaller  neighbourhood   of  ,  such  that   is

contained inside  and dimension of  is of dimension less than or equal to . This

is the stated condition in the theorem. Now, you take  .Then   is contained

inside  , and we know that the boundary of   inside   is contained inside boundary of

, by the above. Therefore, boundary of  in  is of dimension less than or equal to

 by theorem 9.2. Therefore we can conclude that the dimension of   is less than or

equal to .



(Refer Slide Time: 25:07)

Conversely, suppose dimension of  is less than or equal to , given a point  inside  and

a neighbourhood, an open subset in the larger space   such that   is inside  , there are

existing open subset  inside , such that  inside  which is  contained inside ,

which is , and dimension of the boundary of this  in  is less than or equal to 

. This is the meaning of dimension of  is less than or equal to .

Starting with an arbitrary neighbourhood, inside that I can find a neihbourhood  with this

property because dimension of  is less than . The boundary of this  is taken inside 

now. You recall that this is nothing but the closure of  inside , (which is same thing

as subtracting , does not matter) that is the meaning of this one.

(Refer Slide Time: 26:22)



Now, recall that if  is an open set in a topological space , and  is , then  and 

will disjoint open sets and hence they are mutually separated inside  . Start with an open

subset  , and take  to , so automatically, you know that boundaries of   and  are

themselves disjoint. 

Apply this, with  equal to  and  equal to , and  equal to  setminus the closure of

 inside . Then A and B are mutually separated and therefore, by the above lemma, we

get an open subset  of  such that  is inside  and the  setminus closure of

 in  (that is ) is empty.

Therefore, , if you take the only interaction that must be contained inside this subset

which you have thrown away. Once you throw away this the intersection is empty, so this

must be contained inside closure of  inside . We also have  inside  now as well as

 because is .

So,  putting  these  two  together,  what  we  have  is  boundary  of   will  be  equal  to

(boundary of   by definition is)  , which is   setminus (points of  

have to be thrown away, that is the same as)  . But this first one contained in the

closure of  setminus the second one contains the smaller set  this is a subset of this one.

But this is nothing but the boundary of  taken inside . and that is precisely the statement

in the converse part.

Note that it took some set topology here, you see, you have to do it carefully.
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Now, we have a beautiful theorem here. Maybe not very beautiful because you may expect

that dimension of the union is  equal to the sum of the dimensions of the individual sets.

However such sweeping things will not work. So, slight modification is necessary, so yet it is

quite beautiful that is what I want to say.

 and  are subsets of a separable metric space (no other condition). Then dimension of the

union  is less than or equal to dimension of  plus dimension of  plus .

Only thing I am considering is the case when dimensions are finite. The statement is true

other also with correct interpretation of the two sides of the inequality. For instance,  suppose

dimension of  is infinite or dimension  is infinite, then the inequality is obvious. I want to

avoid all that discussion. I want to take the case wherein dimension of   plus  is itself is

finite,  dimension of   is finite, dimension of   is finite. You can examine what happens

when they are infinite, no problem.

 Let us do induction, on dimension of  plus dimension of . The least value of dimension of

 plus dimension of   (this occurs when both   and   are empty)  is   and then (their

union is also empty and hence is of dimension ) , so this is okay.

You see even at this level, viz., when  is empty, the inequality `dimension  is less

than or equal  to  dimenson   plus dimension   will not  be true. So, the modification by

adding  on the RHS was necessary.

You see even at the, even if that level empty set empty set, dimension of  is empty is

less than or equal to ,  does not would have will not have made sense. See,  is not less



than equal to  plus  we have to add one more, even at the level this  is necessary even

at the very beginning. So, this case is over the least case.
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Now, assume that dimension of  plus dimension of  is greater than or equal to  (which

just means that at least one of  or  must be non-empty that is all). Suppose the statement is

true for all pairs of spaces, , , whenever this happens, namely for which dimension of 

plus dimension of  is less than dimension of  plus dimension of , this is the inductive

hypothesis here. Not just for  and , whenever you have the sum of the dimensions is less

than dimension  plus dimension , for such pairs of spaces, the inequality in the theorem

must hold. That is the inductive hypothesis. Then, we want to prove it for one higher number.

First of all it follows that  is non-empty, that is what I have told you already. So take 

to be in the union and  be a neighbourhood of . By symmetry, we may assume  is either

in  or in , so you assume  is in  just for writing down the proof.

By the previous theorem, there exists a neighbourhood  of , such that  is contained inside

 and dimension of   is less than equal to dimension of   minus  . (The previous

theorem enters here, you see everything is happening inside  except the last condition viz.,

dimension  of   is  of  dimension  less  than  equal  to  this  one.)  So,  we  also  have

dimension of  is less than dimension of , because subspaces respect dimension. 

Therefore, we can apply the induction to the pair ( , ), this is , the sum

total dimension is smaller than dimension of  plus dimension of . First one is strictly



smaller than   minus  , the other one is just less than, so the sum total will be less than

dimension of  plus dimension of .

Therefore,  induction  hypothesis  should  be  applicable  to  these  two  subspaces  ,

, to conclude that the dimension of the union of these two subspaces is less than or

equal to  plus dimension of the first one is  minus , dimension of  minus  here, you see

the other one is less than dimension of . So,  and  cancel out and the sum total is fine. 

Since, this is true for every point  inside the union, from the previous theorem, we conclude

that dimension of  must be  plus dimension of  plus dimension of .

So, induction is quite easy here, once you have this theorem which gives you a criterion in

terms of  the ambient  space  .  I  do not  have  to  work with   or   separately.  This

boundary of  is taken inside .
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Now, we have another easy corollary, which is something funny here you can say. 

Union of  subspaces of dimension  has dimension less than or equal to . 

You cannot say its dimension is  . Dimension when you take union, may go up by one at a

time. You know we have seen that, that is a statement of previous theorem.

So, this is an easy corollary to the previous theorem, namely, if you take two -dimensional

spaces,  the union is of dimension less than equal  to dimension  , take one more then the

dimension is less than equal to  and, so on it goes on, so you will get dimension less than

or equal to .
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Now, here is an example now, start with any integer , possibly positive otherwise there will

not be anything left here, and take  to be smaller than that, you can take equality also. Let

 upper  lower  denote the space of all points in , at most  of whose coordinates are

rational. Recall earlier we have studied , which is the space of points in  with exactly m

coordinates rational.

Now, you have to be very careful here, that we are taking at most  of whose coordinates are

rational. And let   be the space of those points with at least   of whose coordinates are

rational. Their union is the whole space .

The claim is that the dimension of  is less than equal to , and dimension of  less than or

equal to . How do you do that? 

Let us look at the space . So you can start with , i.e., no coordinate is rational. It is

fullly,  all  the  all  coordinates  are  irrational.  We  know  that  this  is   and  is  -

dimensional. Then, take , the space with exactly one coordinate is rational, and so on, upto

.   is the union of these   spaces which we have studies earlier,   they are  -

dimensional. So, dimension of  is less than , Exactly similarly we have the other way

around for . Here at least  of the coordinates are rational, so take 

How many   of them all of them  -dimensional. Therefore, the dimension of the

union is less than or equal to  . We will stop here, we will continue again next time,

some theorems for -dimension spaces, thank you.


