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Hello  welcome  to  NPTEL  NOC an  Introductory  Course  on  Point  Set  Topology  part  2,

module 40. So, far we have prepared ourselves with the so called Global separation properties

for the launch of dimension theory proper. That is what we are going to do today. Recall that

a space satisfies SII if and only if it has a basis consisting of clopen sets. We are guided by

the observations that we have in the classical study of euclidean sapcs.  The real line with its

usual topology, in which every point has a fundamental system of neighborhoods such that

the boundaries are just two points, a discrete space, a  0-dimensional space. 

In  ,  every  point  has  a  fundamental  system of  neighbourhoods,  say,  open discs  whose

boundaries  are  circles  which  are  1-dimensional  and  so  on.  We  now make  an  inductive

definition of the dimension. The key property is this SII. 
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So, we begin with the definition of dimension  which is nothing but an empty space. Only

empty space is defined to be of dimension . 

Of course, in all other cases, we start with a non empty separable metric space just to remind

you, without mentioning it again and again.

We say  is  -dimensional (and then we write dimension of  equal to ) if   has a base

consisting of open sets with empty boundary. You see these basic elements of this base are

open sets without boundary, is same thing as saying that the space   satisfies SII. `Empty

boundary' can be termed as dimension , in our inductive definition. 

So, this is the key, we will do it  like this.  The space   is  -dimensional if  it  has a base

consisting of boundaries of dimension .

Now, suppose   is  a some positive integer and we have defined what is the meaning of

dimension  is less than or equal to . We say  has dimension less than or equal to ,

(the next one),  if  it  has a base consisting of open sets   such that the dimension of the

boundary of  is less than or equal to . In that case we write dimension of  is less than

or equal to . 

Note that so far, I have not defined dimension of a space as a number. What I have defined is

the entire  phrase `dimension of   less than or equal  to  '.  What is  the meaning of that,



namely,  has a base consisting of open sets such that the boundaries of each of these open

sets is of dimension less than equal to . This makes sense by induction since we have

defined dimension equal to  completely.  

Now, we say  has dimension exactly equal to , if first of all the dimenson of  is less than

or equal to  as defined earlier and in addition, dimension of  is not less than or equal to

. This, I can rephrase as follows: take the least integer  for which dimension of   is

less than or equal to  holds. That is called the dimension of . Then if you take any number

, then it is not true that dimension of  is less than or equal to .

So, this  is the least integer such that dimension of  is less than or equal to . So, that least

integer is called dimension of  . Finally, we say   has dimension infinity, if for every  ,

dimension of  is less than or equal to  is not true. 

 

Let us take a little time to recapitulate what exactly this definition means, just logically. 
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For example, you can easily see that dimension less than equal to  is a topological property,

because it has been defined in terms of the existence of a base of a particular topological

property.  If  a  space  homeomorphic  to  the  given  space,  that  space  will  also  have  the

corresponding base with the corresponding topological property. Under the homeomorphism

open sets will go to open sets and their boundaries will go to boundaries. So, inductively if 

from   to   is a homeomorphism and dimension of   is less than or equal to  , we can

prove that dimension of  is less than equal to . 



Inductively. So, where does the induction start? When you have an empty set and anything

homeomorphic to an empty set is also an empty set, that is all so, there is nothing more than

that. 

However, under an arbitrary continuous function, the dimension is not behaved well. One

would expect that dimension would go down under a continuous function, namely, image of a

continuous function will be of dimension lower than the domain. That expectation is true

only if you qualify this function a little more than just being a continuous function. Quite

often, a  function will do that job. Analytic functions, polynomial functions they all do that

they will never increase the dimension. Of course, we know that the dimension can go down

very easily. For example, you can take a constant function, a coordinate projections from 

to , etc. Singleton space is of dimension ,   is of dimension , and so on. That is easy.

So, what is weird is that just if you take a continuous function, then dimension of the image

may be smaller. You must be knowing the existence of what are called Peano's curves. The

Peano's  curves  are  such  that  they are  continuous functions  from a  closed  interval  to  the

product of two closed intervals, to the product of three closed intervals, to the product of any

number of closed intervals. 

In fact, there are continuous surjective functions from a closure interval into the Hilbert cube

itself.  We shall  not  discuss those functions  here,  but  just  stating the fact  for  the sake of

information. 
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Let  be a space of dimension  for some finite number . Then it has subspaces of all

dimensions less than or equal to . Of course empty set is a subspace of dimension , so, I

can include  also. 

How to show this? There exists a point , with a fundamental system of neighbourhoods

 such  that  boundary  of   is  precisely  of  dimension  .  For  each  point  there  is  a

neighborhood  we  have  the  whole  as  a  fundamental  system  of  neighborhoods  with  this

property. 

So, boundary of  is dimension . So, I have got a subspace of dimension , but now

we apply it to a point in the boundary. So this way, you keep going down. So, you get all the

dimensions .  

The above property is false if   is of dimension infinity. One would expect that a space of

dimension infinity will have subspaces of all finite dimensions. That is not the case. There are

Examples  of  infinite  dimensional  spaces  all  of  whose  finite  dimensional  subspaces  are

countable sets. We will see easily that every nonempty countable space is of -dimensional.

These examples are in paper of Hurewicz himself. So, if you are interested in you can look at

it and I have given the reference here. 
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Let us now concentrate our attention on -dimension for some time. Slowly, you we will see

that whatever you are doing for  -dimension will  be useful  in the development of higher

dimensions also. So, let us first concentrate on -dimension. 



So, the first result is: If  is a -dimensional space then so is every non empty subset  of 

with the subspace topology. 

The proof is very easy.

Being a  subspace  of  a  second countable  metric  space,  first  of  all   is  also  the  second

countable metric space, so, it is qualifies for the definition of dimension. but you have already

seen that SII is hereditary. 

So,  already satisfy SII. That closes the argument.  must be of dimension  because we

have assumed that is non empty. If it were empty of course, then the dimension is .  
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All examples in our previous chapter fit for this. Right in the beginning you can look into

example, 8.6. They are all -dimensional. Except one, we have proved all of them, that they

are -dimensional in the sense that they satisfy SII. We did not call them -dimensional at that

time, in the new definition SII is the same thing as -dimension. So, only thing that we are

left to do is to prove that example (v) is -dimensional, that it has a base consisting of empty

boundary. 
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So, let us prepare to prove that one. And let us have some more theorems which will be more

useful. I am just proving a theorem that will help in that example. 



A countable union of -dimensional closed subspaces is -dimensional. 

Just  now,  we  had  quoted a  paper  of  Hurewicz  in  which  you  have  a  space,  every  finite

dimensional  subspace  of  which  is  countable.  So,  if  you assume that  these  subspaces  are

countable, then it follows that they are actually of dimension   by the above theorem. Of

course, the space is  and hence every singleton is closed. And a countable set is a countable

union of singletons. So, that is the consequence of the theorem now.

 

Proof is easy again. If  is the union  ranging from  to infinity of , where each  is -

dimensional closed closed subspace, being subspaces of a second countable space, each  is

second countable and hence each of them is Lindelof. Therefore, our earlier theorem 8.7 tells

us that each   satisfies SIII. Remember SII implies SIII under Lindelofness. That was a

theorem. But then, another theorem says that  satisfies SIII, because it is countable union of

these things. So, that was another theorem, I have just quoted here. 

If   is a   space,   is a countable union of closed sets each satisfying SIII then   also

satisfies SIII.

So, that was a theorem. So, you see, all these background material we have prepared so that

our life becomes easier here. So what we have got here is a countable union of -dimension

closed subspaces is  -dimensional. Of course, now it looks easy, but we have to use both

these theorems. 
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As a corollary: If we have union of just two  -dimensional subspaces and one of them is

closed, then the union is -dimensional. It is not a direct consequence. But how do we use the



previous theorem? countable union of closed sets that is the key. So, union of two things, one

of them is closed, all that you have to do is the other one, you must be able to write it as a

countable union of closed subsets. That is all, being -dimensional, all those subspaces will

be -dimensional also. 

So, that is what we will do now, start with  equal to union of two subsets  and , one of

them is closed both of them are -dimensional. So, let us assume  is closed. Look at 

. That is an open subset of a metric space. Every open subset of a metric space is a countable

union of closed sets, an  set. So, write  equal to union  ranging from  to infinity of

, where each  is closed in . 

You must remember this one. While proving that a metric space is paracompact, one of the

things was to write an open set as a countable union of closed subsets. So, I will show you

what it was just to recall. This was precisely this 's. Remember, these  are defined like

this, the set of all  points   in   such that   is bigger than  .   will be got by

allowing equality as well. And union of all 's will be equal to the open set . That is how

we can write an open set as a countable union of closed sets.  
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Now each   being a subset  of   is  -dimensonal. So, now you can apply the previous

theorem to conclude the corollary.

(Refer Slide Time: 19:20)



So, now, we come to the example, example 8.6 the fifth one there. Namely we shall prove

that the subspace  of  consisting of points exactly m of whose coordinates are rational

is  -dimensional. In fact, the cases   and , we have already proved. But we are

not going to use that explicitly. We can directly prove this no problem. So, choose indices

,  of them, and fix them.

Not only that, next you fix rational number  also. Then look at the affine linear

subspace which is denoted by   of   given by these   equations, the  -th

coordinate is equal to  for . That is clearly homeomorphic to , being a

copy of  under a translation a shift coordinates that is all. So, inside this, the subspace

consisting of points all of whose other coordinates are irrational is therefore homeomorphic

to the subspace of  with the same property, namely . 

We have proved that this is already  -dimensional. Clearly this subspace is closed in  ,

being given by a finite set of linear equations. 
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As you vary the  -tuple   over  , you will get all elements of   which

have rational coordinates  exactly  at these coordinates  .  That  is a countable

union because   is countable. Therefore the subspace   is  -dimensional.

So, now you take another union, but this time a finite union of   as these  -

tuples  vary  over  all  possible  strictly  increasing  functions   from   into

, to obtain the space . 
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So, here are some elementary exercises you can try them on your own. Of course, there will

be some TA's to help you if you do not get it. Show that a countable product of -dimensional

space is -dimensional. 



Next, suppose  is -dimensional, show that its Wallman compactification is -dimensional.

This may be a little challenging but if you think a little then you will get it. 
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Let us now go to higher dimension. So, to begin with of course, we will have some examples.

The first example as such should be our motivating example. Namely, the real line with the

usual  topology  has  dimension  one  as  I  have  pointed  out.  The  fundamental  system  of

neighborhoods  for   is  the set  of  all  bounded open intervals.  The boundary of  an open

interval is just a two point set. which is -dimensional. So, that qualifies  to be dimension

one. 

Every piecewise smooth curve  in  any separable  Banach  space  has dimension one.  Why?

because look at the smooth parts  they are open parts,  so they have dimension one being

homeomorphic to open intervals. That is enough for us, why? On each of components of the

smooth  parts,  by  inverse  function  theorem,  there  is  a  diffeomorphism  and  hence  is

homeomorphism to an open interval in .  

So, in particular circles, parabolas, any polygon etcetera, all of them have dimension . In fact

countable union of these things are also -dimensional inside  and so on because each

of circles,  parabolas  etc  they  are all  given by polynomial  equations.  So,  they are  closed

subsets. That is why countable unon of these things will also be -dimensional.
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In example, 8.6(viii), we have seen that the subspace   of all points in the Hilbert space

, whose coordinates are all rational is of positive dimension. We shall now show that it

is actually of dimension less than or equal to   and hence dimension is equal to  . So, by

homogeneity, (homogeneity is what, any point can be moved to any other point by a self

homeomorphism inside of  ) it is enough to consider one single point say origin has a

fundamental system of neighbourhoods , with boundary of  having dimension . That is

what  we want  to  show. (If  you have  a  fundamental  system of  neighborhoods which are

clopen sets then the space itself would be of dimension .) 

 

So, for , let us have this notation:  is the set of all  belonging to  such that the

, i.e., nothing but summation  is equal to . Take  to be , namely, all

points  of  with each  being rational. 

It suffices to show that  is -dimensional. Why? because  is the boundary of a system

of neighborhoods which form a local base at  for the space  here. Intersected with , they

form a fundamental system of neighborhoods at  for  with their boundaries  intersection

with . That is want we are interested in. So I will show that these are -dimensional. For

this we shall identify  with a subspace of  where  is our Hilbert cube, and  is

the set of all those points with all the coordinates rational. This we have seen is -dimensional

just before this example, viz., in example 8.6 (vi).
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So, this was the example where we showed that   here is  .  Remember that   was

homeomorphic to  this  ,  with the product  topology and this   was the metric  induced

topology, etc.
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 So, this   is  -dimensional is what we have shown. So, we are going to show that this

 is homeomorphic with a subspace of . 
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For this, we use instead of  we use this , product of countably infinite copies of the closed

interval  .  So,  consider  the  map   from   to  ,  which  is  just  the  identity  map.

Remember,  this  is  the  ball  of  radius  ,   lies  between   and  ,  positive  but  less  than  .

Therefore, each coordinate of a point  of  lies in . (It is between  and , actually.)

So, this identity map makes sense, no problem.

Indeed, it is continuous, why? because any function into the product space is continuous if

and only if the coordinate functions are continuous. In  as a subspace of , if you take just

the -coordinate, that is a continuous function all right. So, these are continuous functions.

So, identity map we can call it as the inclusion. We should show that it is an embedding of 

into . Embedding means what, it is a homeomorphism onto the image. That is all I have to

show.  For  then,   will  go  into  the  subspace  with  rational  coordinates,  which  is

nothing but  and that is -dimensional; we will be done. 

So, we have to show that this eta is an embedding. A continuous injection, when is it an

embedding? You should either show that it is closed or it is open. Closed map is equivalent to

open map because already it is an injective mapping. So that is all. So, let us try to show that

it is a closed mapping.
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But this is equivalent to the following statement: 

 

(Take a closed set inside , its image is closed inside . That is what I want to show. Instead

of been  , the Hilbert cube, we have changed to the model  . So, inside  , it should be

closed that is what I would show. It is the same thing as) taking a sequence inside the image,

such that each coordinate function is convergent. That is the meaning of a sequence inside the

product space is convergent. Then I have to show that the sequence is convergent in  itself. 

So, correct statement I repeat, given the sequence  in  and a point  in  such that the

coordinates sequence  converges this to , it should imply that   converges to 

inside , wherein I have to use the topology of  here. We hope you have seen the proof of

this statement in the blue color, somewhere else. So, if not you can try it. I have given you a

hint here: Use Cauchy Schwarz's. 

Of course,  if you do not get it,  we will explain it  to you. I think today it  is enough. So,

tomorrow we will continue with the study of higher dimensional spaces. Thank you. 


