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Module-40 Dgfinition and examples

Recall that a space satisfies SII iff it has basis consisting of clopen sets
(remark 8.5 (4)). We are going to adopt this now to define a concept
of dimensions of topological spaces. Of course, we make a blanket
assumption that all our spaces are separable metric spaces,

We begin with the following inductive definition.

Definition 9.1

Empty space and the only empty space is defined to be of dimension —1.
Let X be a non empty separable metric space.

We say X is 0-dimensional and write dim X = 0 if X has a base consisting
of open sets with empty boundary (dimension —1).

Suppose n € N and we have defined dim X < n— 1. We say X has
dimension < n if it hac a hasis ronsisting of onen sets [/ such that

T
g
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Hello welcome to NPTEL NOC an Introductory Course on Point Set Topology part 2,

module 40. So, far we have prepared ourselves with the so called Global separation properties
for the launch of dimension theory proper. That is what we are going to do today. Recall that
a space satisfies SII if and only if it has a basis consisting of clopen sets. We are guided by
the observations that we have in the classical study of euclidean sapcs. The real line with its
usual topology, in which every point has a fundamental system of neighborhoods such that

the boundaries are just two points, a discrete space, a 0-dimensional space.

In R? every point has a fundamental system of neighbourhoods, say, open discs whose
boundaries are circles which are 1-dimensional and so on. We now make an inductive

definition of the dimension. The key property is this SII.
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of dimensions of topological spaces. Of course, we make a blanket
assumption that all our spaces are separable metric spaces.
We begin with the following inductive definition.

Definition 9.1

Empty space and the only em::ty space is defined to be of dimension —1.
Let X be a non empty separable metric space.

We say X is 0-dimensional and write dim X = 0 if X has a base consisting
of open sets with empty boundary (dimension —1).

Suppose n € N and we have defined dim X < n— 1. We say X has
dimension < n if it has a basis consisting of open sets U such that
dimdU < n—1. Then we write dim X < n.

We say X has dimension n if dim X < nand dim X < n— 1 is not true.
We say X has dimension oo if for every n € N, dim X < n is not true.

So, we begin with the definition of dimension —1 which is nothing but an empty space. Only

empty space is defined to be of dimension —1.

Of course, in all other cases, we start with a non empty separable metric space just to remind

you, without mentioning it again and again.

We say X is 0-dimensional (and then we write dimension of X equal to 0) if X has a base
consisting of open sets with empty boundary. You see these basic elements of this base are
open sets without boundary, is same thing as saying that the space X satisfies SII. "Empty

boundary' can be termed as dimension —1, in our inductive definition.

So, this is the key, we will do it like this. The space X is 0-dimensional if it has a base

consisting of boundaries of dimension —1.

Now, suppose n is a some positive integer and we have defined what is the meaning of
dimension X is less than or equal to ? — 1. We say X has dimension less than or equal to ™,

(the next one), if it has a base consisting of open sets U such that the dimension of the
boundary of U is less than or equal to n — 1. In that case we write dimension of X is less than

or equal to n.

Note that so far, I have not defined dimension of a space as a number. What I have defined is

the entire phrase ‘dimension of X less than or equal to n'. What is the meaning of that,



namely, X has a base consisting of open sets such that the boundaries of each of these open
sets is of dimension less than equal to n» — 1. This makes sense by induction since we have

defined dimension equal to —1 completely.

Now, we say X has dimension exactly equal to n, if first of all the dimenson of X is less than
or equal to n as defined earlier and in addition, dimension of X is not less than or equal to
n — 1. This, I can rephrase as follows: take the least integer n for which dimension of X is
less than or equal to n holds. That is called the dimension of X. Then if you take any number

k < n, then it is not true that dimension of X is less than or equal to k.

So, this n is the least integer such that dimension of X is less than or equal to n. So, that least
integer is called dimension of X. Finally, we say X has dimension infinity, if for every n,

dimension of X is less than or equal to 7 is not true.

Let us take a little time to recapitulate what exactly this definition means, just logically.

(Refer Slide Time: 06:03)

Kemark Y.2

(1) It is easily seen that being of dimension < nis a topological property.
So is the property of being of dimension = n.

(2) However, it is badly behaved under continuous maps. Coordinate
projections lower the dimension whereas maps such as Peano's space
filling curves increase the dimension. This does not need any further
justification once we establish that dimR" = n. Of course you should
know the existence of Peano curves. On the other hand, if you want
to take C' functions, before tha? your domain must be a smooth
manifold or some such thing and then some elementary argument
with derivative of smooth functions will tell you that the dimension
never increases under smooth functions. We shall not discuss this any
further here.

0
For example, you can easily see that dimension less than equal to n is a topological property,
because it has been defined in terms of the existence of a base of a particular topological
property. If a space homeomorphic to the given space, that space will also have the
corresponding base with the corresponding topological property. Under the homeomorphism
open sets will go to open sets and their boundaries will go to boundaries. So, inductively if f
from X to Y is a homeomorphism and dimension of X is less than or equal to n, we can

prove that dimension of f(X) = Y is less than equal to n.



Inductively. So, where does the induction start? When you have an empty set and anything
homeomorphic to an empty set is also an empty set, that is all so, there is nothing more than

that.

However, under an arbitrary continuous function, the dimension is not behaved well. One
would expect that dimension would go down under a continuous function, namely, image of a
continuous function will be of dimension lower than the domain. That expectation is true
only if you qualify this function a little more than just being a continuous function. Quite
often, a C function will do that job. Analytic functions, polynomial functions they all do that
they will never increase the dimension. Of course, we know that the dimension can go down
very easily. For example, you can take a constant function, a coordinate projections from R"
to R™ ™!, etc. Singleton space is of dimension 0, R is of dimension 1, and so on. That is easy.
So, what is weird is that just if you take a continuous function, then dimension of the image
may be smaller. You must be knowing the existence of what are called Peano's curves. The
Peano's curves are such that they are continuous functions from a closed interval to the
product of two closed intervals, to the product of three closed intervals, to the product of any

number of closed intervals.

In fact, there are continuous surjective functions from a closure interval into the Hilbert cube
itself. We shall not discuss those functions here, but just stating the fact for the sake of

information.
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(3) Let X be a space of dimension n. 0 < n < co. Then it has subspaces
of all dimension 0 < i < n— 1. For given any point x € X there exists
an onbd U of x such that dU is precisely of dimension n — 1. Now you
can proceed with a downward induction.

(4) The above property is false if dim X = oo, Examples of infinite
dimensional spaces whose subspaces of finite dimension are all
countable sets. (See W. Hurewicz, Une remarque sur 'hypothése du
continu, Fund. Math. 19(1932) pp 8-9.)

5
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Let X be a space of dimension n for some finite number n > 0. Then it has subspaces of all
dimensions less than or equal to n. Of course empty set is a subspace of dimension —1, so, I

can include —1 also.

How to show this? There exists a point x € X, with a fundamental system of neighbourhoods
U such that boundary of U is precisely of dimension n — 1. For each point there is a

neighborhood we have the whole as a fundamental system of neighborhoods with this

property.

So, boundary of U is dimension n — 1. So, I have got a subspace of dimension n — 1, but now
we apply it to a point in the boundary. So this way, you keep going down. So, you get all the

dimensionsn — 1,n — 2,...,—1.

The above property is false if X is of dimension infinity. One would expect that a space of
dimension infinity will have subspaces of all finite dimensions. That is not the case. There are
Examples of infinite dimensional spaces all of whose finite dimensional subspaces are
countable sets. We will see easily that every nonempty countable space is of 0-dimensional.
These examples are in paper of Hurewicz himself. So, if you are interested in you can look at

it and I have given the reference here.

(Refer Slide Time: 11:12)

Let us now concentrate our attention on 0-dimension for some time.
The simplest and pleasant thing to prove about 0-dimensionality is that it
is hereditary:

Theorem 9.3

If X is a O-dimensional space, then so Is every non empty subspace X' of
X.

Proof: Being a subspace of a Il-countable metric spjce X, X' is also a
Il-countable metric space. We have already seen that Sl is hereditary and
hence X' satisfies SII. ()

Let us now concentrate our attention on O-dimension for some time. Slowly, you we will see

that whatever you are doing for O-dimension will be useful in the development of higher

dimensions also. So, let us first concentrate on O-dimension.



So, the first result is: If X is a 0-dimensional space then so is every non empty subset X’ of X

with the subspace topology.

The proof is very easy.

Being a subspace of a second countable metric space, first of all X’ is also the second
countable metric space, so, it is qualifies for the definition of dimension. but you have already

seen that SII is hereditary.

So, X' already satisfy SII. That closes the argument. X’ must be of dimension 0 because we
have assumed that is non empty. If it were empty of course, then the dimension is —1.

(Refer Slide Time: 12:29)
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Example 9.4

All examples from 8.6 are 0-dimensional. Except for example (v), we have
seen the proofs. So, let us now tal*ke steps to prove that Example (v) is
0-dimensional.

All examples in our previous chapter fit for this. Right in the beginning you can look into
example, 8.6. They are all O-dimensional. Except one, we have proved all of them, that they
are O-dimensional in the sense that they satisfy SII. We did not call them O-dimensional at that
time, in the new definition SII is the same thing as 0-dimension. So, only thing that we are
left to do is to prove that example (v) is O-dimensional, that it has a base consisting of empty
boundary.

(Refer Slide Time: 13:20)



Theorem 9.5

A countable union of 0-dimensional closed subspaces is 0-dimensional.

Proof: Let X = U, C,, where each C, is 0-dimensional closed subspace
of X. Being a subspace of || countable space each C, is Il countable and
hence Lindelof. Therefore, theorem 8.7 tells us that each C, satisfies SllI.
But then theorem 8.%33 says that X satisfies SIII. Finally, we have already
seen that SIlI+T; = SII. '

NPTEL

(3) Let X be a space ot dimension n, U < n < 0. Ihen it has subspaces
of all dimension 0 < i < n—1. For given any point x € X there exists
an onbd U of x such that QU is precisely of dimension n — 1. Now yot
can proceed with a downward induction.

(4) The above property is false if dim X = cc. Examples of infinite
dimensional spaces whose subspaces of finite dimension are all
countable sets. (See W. Hurewicz, Une remarque sur I'hypothése du
continu, Fund. Math. 19(1932) pp 8-9.)
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Theorem 8.13

Let X be a Ty space, and X = U3, C; be the countable union of closed
sets Cj, where each C; satisfies SIII. Then X also satisfies SIil.

4 Go back to Theorem 9.5

Proof: Let K, L be two disjoint closed sets. Set K = Gy and L = Hy.
Inductively, we shall construct sequences of open subsets G; and H; of X,
such that

G.q C G, F!]fl CH, GCGUH;, G,‘ n H,‘ =0, Yi>1

NPTEL

So, let us prepare to prove that one. And let us have some more theorems which will be more

useful. I am just proving a theorem that will help in that example.



A countable union of O-dimensional closed subspaces is O-dimensional.

Just now, we had quoted a paper of Hurewicz in which you have a space, every finite
dimensional subspace of which is countable. So, if you assume that these subspaces are
countable, then it follows that they are actually of dimension 0 by the above theorem. Of
course, the space is 77 and hence every singleton is closed. And a countable set is a countable

union of singletons. So, that is the consequence of the theorem now.

Proof is easy again. If X is the union n ranging from 1 to infinity of C,,, where each C), is 0-
dimensional closed closed subspace, being subspaces of a second countable space, each C, is
second countable and hence each of them is Lindelof. Therefore, our earlier theorem 8.7 tells
us that each C,, satisfies SIII. Remember SII implies SIII under Lindelofness. That was a
theorem. But then, another theorem says that X satisfies SIII, because it is countable union of

these things. So, that was another theorem, I have just quoted here.

If X is a T} space, X is a countable union of closed sets each satisfying SIII then X also

satisfies SIII.

So, that was a theorem. So, you see, all these background material we have prepared so that
our life becomes easier here. So what we have got here is a countable union of 0-dimension
closed subspaces is O-dimensional. Of course, now it looks easy, but we have to use both

these theorems.

(Refer Slide Time: 16:26)
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Corollary 9.6

Union of two 0-dimensional subspaces one of them is closed is
0-dimensional.

Proof: Let X = G U (3, G, G5 being O-dimensional and C; being closed.
X'\ Gy, being an open set in a metric space, is a F, set, say

X\ G =U, €, each C being closed in X (slide no. &185) Being a
subset of Gy, each of these ! is 0-dimensional. Now

X=G U(U?;lc:)
o
NPTEL
Note that for each A and each n, we have

(iii) A, C Ay C Ays1 C A and each A, is open. Moreover, if A is open
then

A=UnAn= UnAn A

h i i
(This is what we meant by countablé union of ‘disc-like' subsets in the
remark above.)

0

NPTEL

Proof: Let (X, d) be a pseudo-metric space. Introduce the following
notation: For every subset A of X and n € N, let

(i) Ay = {XEX d(x,A°) > %}
M i
Use triangle inequality to check that

(1) d(An,AS,) > % — 7h1 = 1. (Exercise.)
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Note that for each A and each n, we have

As a corollary: If we have union of just two O-dimensional subspaces and one of them is

closed, then the union is O-dimensional. It is not a direct consequence. But how do we use the



previous theorem? countable union of closed sets that is the key. So, union of two things, one
of them is closed, all that you have to do is the other one, you must be able to write it as a
countable union of closed subsets. That is all, being O-dimensional, all those subspaces will

be 0-dimensional also.

So, that is what we will do now, start with X equal to union of two subsets C and Cs, one of
them is closed both of them are O-dimensional. So, let us assume (' is closed. Look at X \ C
. That is an open subset of a metric space. Every open subset of a metric space is a countable
union of closed sets, an F, set. So, write X \ C equal to union ¢ ranging from 1 to infinity of

C/, where each C! is closed in X.

You must remember this one. While proving that a metric space is paracompact, one of the
things was to write an open set as a countable union of closed subsets. So, I will show you
what it was just to recall. This was precisely this A,'s. Remember, these A,, are defined like
this, the set of all points = in 2 such that d(z, A°) is bigger than 1/2". A,, will be got by
allowing equality as well. And union of all A4,,'s will be equal to the open set A. That is how

we can write an open set as a countable union of closed sets.

(Refer Slide Time: 18:56)

Corollary 9.6

Union of two 0-dimensional subspaces one of them is closed is
0-dimensional.

Proof: Let X = G U (3, G, G being O-dimensional and C; being closed.
X\ Gy, being an open set in a metric space, is a F, set, say

X\ G =%, C, each €] being closed in X (slide no. 185). Being a
subset of Gy, each of these C! is O-dimensional. Now

X= ClU[UI‘—IE:)

and we are in the situation of the theorem above. [

Now each C; being a subset of C5 is O-dimensonal. So, now you can apply the previous

theorem to conclude the corollary.

(Refer Slide Time: 19:20)



Example 9.7

We can now consider Examples 8.6(v), viz., we shall prove that the
subspace R of R" consisting of points exactly m of whose coordinates
are rational is 0-dimensional for each 1 < m < n. Fix

1< << < im<nand fix an m-tuple (r,1,...,ry) of rational
numbers. Then the affine linear subspace L(ry,...,rm) of R" given by the
affine linear equations x;, = ri,k = 1,2...,m is affine linear isometric to
R™™ The subspace of L(n, ..., rn) offpoints all of whose other
coordinates are irrational is therefore homeomorphic to Z"~™ and hence is
0-dimensional and clearly is a closed subspace of R}

f}
So, now, we come to the example, example 8.6 the fifth one there. Namely we shall prove
that the subspace R of R" consisting of points exactly m of whose coordinates are rational
is O-dimensional. In fact, the cases m = 0 and m = n, we have already proved. But we are
not going to use that explicitly. We can directly prove this no problem. So, choose indices

1 < idg < -+ <1y, <n,mof them, and fix them.

Not only that, next you fix rational number 71,73, ..., r,, also. Then look at the affine linear
subspace which is denoted by L(ry,...,7,) of R™ given by these m equations, the (ix)-th
coordinate is equal to r, for k = 1,2, ..., m. That is clearly homeomorphic to R"™™, being a
copy of R"™" under a translation a shift coordinates that is all. So, inside this, the subspace
consisting of points all of whose other coordinates are irrational is therefore homeomorphic

to the subspace of R™"™ "™ with the same property, namely 1"~ ™.

We have proved that this is already O-dimensional. Clearly this subspace is closed in R,

being given by a finite set of linear equations.

(Refer Slide Time: 22:27)
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As we vary the m-tuple (r1. ..., r,) € Q™ we get a countable union
which is nothing but the space

Qs im)={x€R" : x, €Qk=1,...,m}

Therefore by the above theorem, (i, ..., in) is O-dimensional. But

then R is a finite union of such spaces where the union is taken
over all possible m-tuples 1 < i < -+ < iy <.

9)
(¥
{PTEL

As you vary the m-tuple (r1,...,7,) over Q"™ ™, you will get all elements of R}, which
have rational coordinates exactly at these coordinates (iy,%2,...,%,). That is a countable
union because Q"™ is countable. Therefore the subspace Q(i1,...,4,,) is 0-dimensional.
So, now you take another union, but this time a finite union of Q(i1,...,4,,) as these m-
tuples vary over all possible strictly increasing functions s from {1,2,...,m} into

(1,2,...,n — 1), to obtain the space R,.

(Refer Slide Time: 23:59)
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Exercise 9.8

@ Show that a countable product of 0-dimensional spaces is
0-dimensional.

Q Let X be 0-dimensional. Shov\‘ that W(X) is 0-dimensional.

So, here are some elementary exercises you can try them on your own. Of course, there will
be some TA's to help you if you do not get it. Show that a countable product of O-dimensional

space is 0-dimensional.



Next, suppose X is 0-dimensional, show that its Wallman compactification is 0-dimensional.
This may be a little challenging but if you think a little then you will get it.
(Refer Slide Time: 24:36)

Now let us consider higher dimensions. -~

Example 9.9

(1) The Euclidean space (R, ) has dimension 1.

(2) Every piecewise smooth curve in any separable Banach space has
dimension 1. In particular circles, parabolas, polygons etc. all have
dimension 1. Indeed even finite unions of these objects have dimension 1.

&
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Let us now go to higher dimension. So, to begin with of course, we will have some examples.
The first example as such should be our motivating example. Namely, the real line with the
usual topology has dimension one as I have pointed out. The fundamental system of
neighborhoods for R is the set of all bounded open intervals. The boundary of an open
interval is just a two point set. which is O-dimensional. So, that qualifies R to be dimension
one.

Every piecewise smooth curve in any separable Banach space has dimension one. Why?
because look at the smooth parts they are open parts, so they have dimension one being
homeomorphic to open intervals. That is enough for us, why? On each of components of the
smooth parts, by inverse function theorem, there is a diffeomorphism and hence is

homeomorphism to an open interval in R.

So, in particular circles, parabolas, any polygon etcetera, all of them have dimension 1. In fact
countable union of these things are also 1-dimensional inside R?, R and so on because each
of circles, parabolas etc they are all given by polynomial equations. So, they are closed

subsets. That is why countable unon of these things will also be 1-dimensional.



(Refer Slide Time: 26:38)

Hilbert space £#(IN) whose coordinates are rational has dimension > 0. We
shall now show that it is of dimension < 1, thereby proving that its
dimension is 1.

By homogeneity, it suffices to show that the origin has a fundamental
system of nbds W with dimdW = 0. So for 0 < r < 1, let

Se={xe M) : [xl=r}, QS)=5nQe

It suffices to show that Q(S;) is 0-dimensional. For this we shall identify
Q(Sr) with a subspace of (3, which we have seen is 0-dimensional
(example 8.6(vi) page no 519). Y
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In example, 8.6(viii), we have seen that the subspace Q, of all points in the Hilbert space
/%(N), whose coordinates are all rational is of positive dimension. We shall now show that it
is actually of dimension less than or equal to 1 and hence dimension is equal to 1. So, by
homogeneity, (homogeneity is what, any point can be moved to any other point by a self
homeomorphism inside of £?(N)) it is enough to consider one single point say origin has a
fundamental system of neighbourhoods W, with boundary of W having dimension 0. That is
what we want to show. (If you have a fundamental system of neighborhoods which are

clopen sets then the space itself would be of dimension 0.)

So, for 0 < r < 1, let us have this notation: S, is the set of all = belonging to ¢* such that the
|z|| = r, i.e., nothing but summation x? is equal to 7. Take Q(S,.) to be S, N Qy, namely, all

points = of S, with each x; being rational.

It suffices to show that Q(S,.) is 0-dimensional. Why? because .S, is the boundary of a system
of neighborhoods which form a local base at 0 for the space ¢ here. Intersected with Qy, they
form a fundamental system of neighborhoods at 0 for Q, with their boundaries .S,. intersection
with Q.. That is want we are interested in. So I will show that these are 0-dimensional. For
this we shall identify Q(.S,) with a subspace of Q4 where H is our Hilbert cube, and Qy is
the set of all those points with all the coordinates rational. This we have seen is O-dimensional

just before this example, viz., in example 8.6 (vi).
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Module-37 More examples

(vi) The Hilbert Cube Consider the Hilbert space (2 = (*(N) of all
square-summable sequences s = {s;} of real numbers with the (>

norm
Isll:= /> s?.
i

Let X = J", denote the countably infinite product of the interval
I = [~1,1] with the product topology. There are many ways to put a
metric on it. However, the standard way this is done in Analysis is the

following;
The mapping ¢ : X — (2 given by
. X2 Xn
B(x) = (1,22, , 22,0 28
#x) (Xl 2 n ) (28}
aanmihs ahaaliad 44 ha candliaiais hilacdlan anta dha cikheanana
~
{x
NPTEL
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{%-metric over to I, viz,,

) = o/ 3 Bt

n?

n

Any space which is homeomorphic to (I, 7(d)) is called a Hilbert cube.
The model H is the most popular one for the Hilbert cube, though there is
no standard notation for it. Often it is convenient to use the notation J"

with the metric defined as above for .
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p
So, this was the example where we showed that Q4 here is JV. Remember that Qy was
homeomorphic to this JV, with the product topology and this 7; was the metric induced

topology, etc.

(Refer Slide Time: 30:51)



1 Go back to 564 |

The subspace (Qyy C H of all points with rational coordinates satisfies SII.

To see this, let T,"i I =5 T denote the coordinate projections. Let p be
any point in (J and U be an open set containing p. Let V be a basic
onbd of p such that p € V € U and is of the form

where U; C [~1,1] is an open set with dU;nQ =0fori=1,....n. It
follows that 9V N Qy = 0.

H;‘TEL
Sr={xe ) : |xl=r} QS)=5NQ
It suffices to show that Q)(S;) is O-dimensional. For this we shall identify

(Q(S,) with a subspace of (3, which we have seen is 0-dimensional
(example 8.6(vi) page no 519).
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For this we use the model J' of H and consider the map

NPTEL

So, this Q4 is O-dimensional is what we have shown. So, we are going to show that this

Q(S;) is homeomorphic with a subspace of Q3.

(Refer Slide Time: 31:14)
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For this we use the modé“i IV of % and consider the map
n:5 =1 nlx)=x.

Clearly 1 is a continuous injection. We shall show that it is an embedding
of S, into J™. Since 1(Q(S,)) € Q(I") = Qy is O-dimensional, we will be

6
For this, we use instead of H we use this JV, product of countably infinite copies of the closed
interval [—1,1]. So, consider the map 7 from S, to JV, which is just the identity map.
Remember, this is the ball of radius r, r lies between 0 and 1, positive but less than 1.
Therefore, each coordinate of a point x of S, lies in [—1, 1]. (It is between —r and r, actually.)

So, this identity map makes sense, no problem.

Indeed, it is continuous, why? because any function into the product space is continuous if
and only if the coordinate functions are continuous. In S, as a subspace of 2 if you take just
the i*"-coordinate, that is a continuous function all right. So, these are continuous functions.
So, identity map we can call it as the inclusion. We should show that it is an embedding of .S,
into JV. Embedding means what, it is a homeomorphism onto the image. That is all I have to
show. For then, n(Q(S,)) will go into the subspace with rational coordinates, which is

nothing but Q; and that is O-dimensional; we will be done.

So, we have to show that this eta is an embedding. A continuous injection, when is it an
embedding? You should either show that it is closed or it is open. Closed map is equivalent to
open map because already it is an injective mapping. So that is all. So, let us try to show that

it is a closed mapping.



(Refer Slide Time: 33:40)

It suffices to prove that 1) is a closed map. This is equivalent to the
following statement. '

Given a sequence x, € 5, and point x € S, such that the coordinates
sequences x,(i) — x(i), implies that x, — x in S, C f>. We hope you have
seen the proof of this statement elsewhere. [Hint: Use Cauchy-Schwarz's
inequality.]

r")
£

But this is equivalent to the following statement:

(Take a closed set inside S,, its image is closed inside ¢ That is what I want to show. Instead
of been ¢2, the Hilbert cube, we have changed to the model JN. So, inside JV, it should be
closed that is what I would show. It is the same thing as) taking a sequence inside the image,
such that each coordinate function is convergent. That is the meaning of a sequence inside the

product space is convergent. Then I have to show that the sequence is convergent in .S, itself.

So, correct statement I repeat, given the sequence {z,,} in S, and a point x in S, such that the
coordinates sequence x,, (i) converges this to x(i), it should imply that {z,,} converges to z
inside S,, wherein I have to use the topology of ¢ here. We hope you have seen the proof of
this statement in the blue color, somewhere else. So, if not you can try it. [ have given you a

hint here: Use Cauchy Schwarz's.

Of course, if you do not get it, we will explain it to you. I think today it is enough. So,

tomorrow we will continue with the study of higher dimensional spaces. Thank you.



