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Hello,  welcome to NPTEL NOC, an introductory  course on Point  Set  Topology, Part II,

Module 4.  So, in past three modules we have been preparing for  a proof of implicit and

inverse  function  theorems.  Last  time we also  saw the  statement  of  the  implicit  function

theorem. 
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I have explained the statement last time. Let me just recall this one. 

Now, only  and  are Banach spaces and  is any topological space.  be an open

subset of  and   from  to  be a continuous function. Then it is assumed to

satisfy three more conditions. What are they? 

(i) For some point  inside ,  is . 

(ii) For each , the function  which sends  to  is differentiable as a function

from   to   and  the  associated  derivative  function   from   to   is

continuous. 

(iii) And the derivative  is an isometry of  to .
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(a) Then there exists   positive and an open neighborhood to   of   inside  , and the

function   from   into  the  closed  ball  of  radius   around   such  that  such  that

 for all  . Moreover, this function  from  to   is continuous.

That is the first conclusion. 

The second conclusion, conclusion (b)  requires one more hypothesis; namely, assume that 

is also a Banach space and the function   restricted to   from this   to  , namely,

 is differentiable at  , and its derivative denoted by  . Then   will be

differentiable at  and the derivative of  is given by . So, let us start proving this



one now. There are a number of steps to be taken so that we understand what is going on. So,

the proof is broken up into smaller steps. 
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The first step is I want to make a simplification in the statement as well as in the proof.

Namely, I would like to reduce to the special case when this  is the identity map. How can I

do that? Namely, by composing with  from  to , and as if we are working now all the

time inside . From  we come back to  via . Keep coming into . This is what I want

to do. So, how do I do that? So, as follows. 
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Namely, replace  by  which is . Remember  was from  to . Now,  will

be from  into  itself. So, that is all. Now, suppose we have proved this theorem for 

, in this special case. Then we can go back to the original statement again composing by . 

So, if we replace   by  , then the its derivative   will be equal to   which

Identity map of , because the derivative of a linear automorphism is itself. The derivative of

a composition is by chain rule, is the composite of the derivatives. So,  will be equal

to  which Identity map of .

So, this is what we want to assume,  and  is , so that writing down the

proof will become easier. I am not have to keep on writing  here that is all. So, that is the

first step. As we have proved it for the Special case we know that it is true for the general

case also.  
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In the second step,  now, we have the modified hypothesis.  All  1,  2,  3  are all  modified,

namely,   etc.  and   is  from   to  ,  etc.  Now, you take a  new function  

defined by .  is a function from  to . So,  is also a function

from  to . 
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For every  between  and , let us have this short notation = minimum of  and . First

we claim that there is an open subset  such that  is inside  and  is contained inside

 and there is a positive  such that  restricted to  cross the closed ball goes inside the

closed ball. And satisfies this inequality. This is our second step. Part of this, remember, is

the existence of this  and . 

This was a part of (a) right? But the conclusion is not exactly same as in (a). It is apparently a

weaker conclusion. We are not yet  saying that there is a unique   and etc.   has not yet

appeared.  The  first  thing  is  the  new  function   has  this  property  namely,  the

, for every ,  and  inside the closed ball. 

Remember, this was nothing but a uniform contraction. So, we are going to  apply contraction

mapping which was done in the first module. Remember that? So, first we have to claim this

one. So, first let us get the proof of this part. How to prove this one? 
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 is identity of  now. (Earlier it was just a similarity ). In the new hypothesis, it is

identity. Using continuity of , we first select a neighborhood  of  and a  positive such

that   minus identity is less than  . So, this is where the continuity of the partial

derivative of  in the second variable that is used. This  was the differentiation of capital ,

with respect to the second variable . 

So, by continuity of this, some neighborhood of   and some neighborhood of   will go

inside the  ball. In the neighborhood of , I can choose an open ball, of course, so that its

closure is contained in that neighbourhood. No problem. But for neighborhood of , since 

is some arbitrary space, I do not have any balls there yet. For every , inside  cross this

closed ball, this inequality holds.  

Now, use the continuity of  , to replace   by a smaller neighborhood if necessary, so,

that norm of  is less than  for every . So, there is a modification of  at

the second stage. This new  will depend upon the . The number role is chosen in the first

instance. Then I am choosing  sufficiently small so that another inequality is satisfies. So,

the choice of   will depend upon . (If I was working with original  , then I had to take

care of factor of  here. No, it is easier.) 
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Now, fix a  and put . Remember, what was , by definition, it is

. So,  is a function of ,  is fixed. The derivative of  at  with respect to  is

nothing but, derivative of  is identity map on  minus this part is . I am just using

this formula, this definition here. This derivative of this one is identity minus the derivative

of , all right. So, .

Therefore, the norm of this, which is less than equal to the norm of identity minus  of this

one that is less than . See,  minus identity less than , that is (14). So,  is less than

or equal to half because   is the minimum of   and  . This inequality holds for every

  belonging to  . Here, once the derivative has less than or equal to   we

know that  is less than or equal to this constant . So, this is the

mean value theorem that we have proved. So, what is this one? This constant is less than one.

Therefore, this  is a contraction mapping. 
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In order to apply the contraction mapping principle, we have yet to show that this  take the

closed ball inside the closed ball. A closed ball in a Banach space is a complete metric space

on its own. Then we can apply contraction mapping. 
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So, next step, we have to do this one. So, here I have made a remark, which I have already

explained. So, we have to prove that the closed ball goes inside a closed ball and under .

So, that we can think of   as a contraction mapping inside this metric space which is a

complete metric there. So, why this is true? Take any  such that , that means a

point of the closed ball of radius  around . Then I should show that the norm of 

is less that to equal to . So, that will prove this statement. 
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So, I am looking at the norm of this one. Now, here you add and subtract  . The first

term is less than or equal to . The second term is norm of  which is less

than or equal to . Therefore LHS is les than or equal to .

This is minus of minus that will plus. Norm when you take they are the same.  is this,

let me bring it this one, this one on this side, so,   minus this one. What I am telling here

 here  will be equal to  with a negative sign, the norm will

be the same. 
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So, now, we can come to the proof of statement (a) that is the step three.  is a Banach space,

every closed ball in it is a complete metric space.  Therefore by step 2, we can apply the

contraction mapping theorem to conclude that  has a unique fixed point. We define  from

 into  by the formula . For each  there is only one unique map, that is

important, there is one unique point inside this ball with this property. By definition, this is

equivalent to saying that  because .
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In  particular  ,  because  we  have  assumed  .  That  was  a  starting

hypothesis. The continuity of  is a direct consequence of Part (b) of the contraction-mapping

theorem, which we have proved in the first module. Since  is continuous in , continuity of

 follows again what we have proved there. So, this proves part (a).

Now, the proof of Part (b). Assume that   is a Banach space. We may assume that  is a

convex neighborhood of  , in both is (14) and (15), by replacing   by a smaller set  if

necessary. This did not make sense earlier when  was not a vector space. 
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But once we know that Y is a Banach space, we can choose  to be a convex neighborhood

of the point . So, having made that demand on , let us continue now for the proof of this

part, here. 
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By theorem 1.21 now, because of convexity along with this hypothesis (14) what happens? 

The norm of   (recall   is identity here) is less than equal to

, for every  So, this was the mean value inequality. We have

proved this theorem 1.21. Put  in this formula. 
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Then  we  have  norm  of   is  less  than  or  equal  to

.  Since  ,  this  becomes   is  less  than

equal to  . So, because I am taking a norm I can convert all these negative

signs into positive signs. 
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So, we now appeal to Part b of theorem 1.1 namely the continuity part. Taking  equal to 

and   equal to  , we get norm of   is equal to the distance between   and  .

What is ? It is . Therefore this distance is less than or equal to  divided by  times

distance  between   and  .  This  distance  you  can  express  as  the  norm  of  the

difference. Therefore it is equal to norm of  and hence the LHS is less than or equal

to -norm of . 

See I have used full statement of Part b of theorem 1.1, namely the inequality that we have

established there.  can be expressed in terms of the metric which was the notation

used in the theorem 1.1. So I go back and forth with the norm and the distance. That is all.

Finally, since  is less than or equal to , I can replace the factor  divided by 

with . 

Therefore, going back now, we get norm of   is less than or equal  to

. All that we want is some constant here. It depends upon . It may be three

times four times that does not matter. 
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So, let us write   plus the remainder  . Why we can write

this way? Because this is  is the derivative of  with respect to the -coordinate,  is fixed

here. , I am taking because this is the derivative with respect to the -coordinate here.

So,   the remainder  after  the first  term has a  property that   divided by norm of

 tends to  as  tends to . So, I am using the increment theorem here. 

(Refer Slide Time: 28:04)

Therefore, if you use this  inequality that we have established, what we get is the norm of

 is  equal  to  norm of   which  is

less than or equal to . 
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You divide out by  and take this limit as  tends to , that term will be less than or

equal to  . Since this is true for all  , it follows that this limit is zero.

That proves that  is differentiable at  with its derivative equal to . 
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So, this completes the proof of Part b and thereby compute the proof of the implicit function

theorem. I recall that in the original statement there was a   here, but now, in the in the

modify statement we have made  to be identity map that is why the  does not appear here.

So, that is a proof of implicit function theorem. 
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Now, let us go to inverse function theorem. That is one-step ahead but this is the crux of the

business. This is the main thing that we want to prove finally. 

Let   and   be Banach spaces,   is an open subset of the first Banach space  ,   is a

function  from  this  open  set   into  .  The  condition  on   is  that  it  is  continuously

differentiable function and its  derivative at a  particular  point   in   is  a similarity. The



conclusion is that there exist a neighborhood  of  such that  from  to , its image is

a  homeomorphism onto  an  open  set   in   W.  Moreover   from   to   also

continuously differentiable. 

So, starting with just a continuously differentiable function which is such that at one point the

derivative is invertible, we conclude that, in a small neighborhood the function itself is a

homeomorphism  actually  a  diffeomorphism,  because  inverse  is  also  continuously

differentiable. Moreover,  the image is also open. Both  and  are open.  is open in 

and   is open in  . The hypothesis that   is a similarity automatically implies

that  and  are similar spaces. So, how does one prove this entire statement? 
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Recall the set of all similarities from one Banach space to another Banach space is an open

subset of the continuous linear maps from  to  all continuous maps. This is what we have

seen.  The  function   from   to   is  given  to  be  continuous.  Therefore,  by

replacing  by a smaller neighborhood of , if necessary, we can assume that  is a

similarity for all . All that I did was to appeal to the fact that  is continuous and

 is in the open set of all similarities. 
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Next step: In the implicit function theorem above we take . So, we are in the part (b)

already. Remember part (b) of implicit function theorem wanted that  to be a Banach space.

So, we are inside a very special case, viz,  itself. Take  and  from 

to  to be . In fact, I am supposed to take some neighbourhood of  but

for that we are taking the whole of . And  is a very simple function. Clearly,   is

continuously differentiable as a function of v that is what we wanted first of all. 

In fact, this is continuously differentiable even in terms of w also. So, all the hypothesis that

we needed are satisfied. First of all  . For each  , the derivative of the

function,  namely,   going  to   with  respect  to   is  of  .  And

 is a similarity. So, all the hypothesis of implicit function theorem are satisfied. 

The first part says there is a neighborhood  of  in , and a  positive such that

each , there is a unique (note that since , I am writing  from  as well)

belonging  to   such  that  .  But  what  is  ?  .

Therefore  ,  also   (by  the  uniqueness).  Moreover,   itself  is

continuous and is differentiable at .  

So, what is the meaning of this? This just means that  is identity on . So, that is the

meaning of this one. Moreover, part (a), already tells you that this map  from  to  is a

unique one and part (b) says it is continuous on  and differentiable at . 

So, this is all the implicit function theorem apply to this special case. So, are we through? Not

yet. So, we have to see what is happening here.
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The existence of  implies this  is inside the image of , indeed inside  of the closed ball.

See what it means to say that for , we have point  belonging to the closed ball

such that  .  So   is contained in the closed ball.  That is  the meaning of the

existence. Therefore, what we take is  to be this open ball intersection with .  is

an open set already. So,  is an open set, intersect it with the open ball that is an open

subset of . Clearly it is a neighbourhood of  because  is inside , . 

The uniqueness of   implies that this map  restricted to   from  to   is a bijection.

Because  is an identity, we told you that  is the left inverse of  or which is the same as

saying that  is the right inverse of . But now,  is unique. So,  must be injective also. So, 

is a bijection with  as its inverse.

So, I have already told you that   is inside  and  is open inside  . Also,   from  to

 is a homeomorphism. But why  is open in ? Because  because

 is identity. So,  is also an open subset, it is a neighborhood of . 
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So, here is the picture I have drawn  to  this  could be a many-to-one function. It is not

assumed to be one one map or anything like that. There is no need for such assumptions. So,

what we started? We started with a neighborhood  of  and  here a  neighbourhood

of . 

For each point in , there is a unique  inside this ball. What is  of that is back to  here

is . So, go by  and come back by  that is identity. This means that  is covered by the

image of . This is some larger thing. If you take  of this, it could be larger. It covers . 

But for points of  inside this one, there is only one point which here coming to that, that is

the uniqueness part of . If there are other points here coming here, the uniqueness will fail,

right? But some point here may come here, some point may here may come here I do not

care. Inside this open ball, there is only one . 

So, therefore when you take this  and inverse of that inside this one, there may be some

other point, I am intersecting it with the open ball that is what I am calling . On  to , 

is a bijection now and its inverse is . And what we know is that  is differentiable at ,

here this is .  is continuous and  is continuous, they are inverse of each other, so they are

homeomorphisms.  is open.  is open. But I am not taking the whole of  here what I

am taking is .  is open.  is also a neighbourhood of .

So, only thing that remains to see is: why this  is differentiable on the whole of . We

know this only at one point. What is that point? To begin with  was an arbitrary point of an

open subset  of  on which the derivative of  is invertible. This hypothesis is true for all



points of  now. Remember that was the starting point of our choice of the neighborhood 

here, by cutting down the neighborhood  itself such that  is invertible at all points of 

. So, that hypothesis is there. 

Therefore, for every point  , here I can apply the above conclusion and say that   is

differentiable at , though the choices of the neighbourhoods for homemorphism etc may

be different but do not matter. Therefore,  is differentiable at all the points of .
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So, this is the last thing I repeat here. So, far we had only proved that   is differentiable at

. But then the same argument applied at each point   is   where  range over 

will tell you that in some smaller neighborhood all that is there in the background we can

ignore them. 

But  contained inside  everything.  is a continuous inverse which is differentiable

at .  as a continuous inverse that. But continuous inverse itself is the same  now. There

is no other because  is already one one map. But the inverse of  has to be  on all of .

Therefore,  is differentiable at  on the whole of . 
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So,  final  thing  is  that  since   is  identity,  by  the  chain  rule,

 Similarly for  Therefore these tow derivatives

are inverses of each other:   

Therefore, the continuity of this  follows from the assumption that  is continuous

and the fact that  is continuous, as seen in theorem 1.14. So, that completes the argument,

completes all the proofs of, all the assertions of the inverse function theorem. So, theorem

1.14 is proved. So, that is all today. So, let us stop here.


