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Hello,  welcome  to  NPTEL NOC,  an  introductory  course  on  Point-Set-Topology  part  II.

Today, we shall continue with our study of the Separation of Sets module 39.
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So, we have seen a number of implications and some non-implications also, but now for a

compact Hausdroff space, you will see that all the four axioms are equivalent. So this is the



statement. If  is a compact Hausdroff space, then S0, SI, SII, and SIII are all equivalent to

each other.
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As I told you, we have already proved that under -ness, SIII implies SII implies SI implies

S0, just because every point is closed that is all we have to use. We have also proved that,

under Lindelofness SII implies SIII, the reverse implication. So, it remains to prove that for a

compact Hausdroff space, SI implies SII and S0 implies SI.
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So, before proceeding further, I will state a lemma which can be used again and again and of

course it will be used in proving these two statements. So, the lemma is:

 Take a compact subset  of topological space , take a point  in the .

Suppose every point of  can be separated from . Then there exists a clopen subset 

of , such that it contains  and does not contain the point . 

So, from pointwise separation we have concluded global separation. Each point of  can be

separated from  is the hypothesis, which is SII, but only for points of this compact subset 

and the point . So that a bit more general than assuming SII for all pairs of points, but this

result will be useful for us.

So, what we do? To each point , we get a separation that is the hypothesis,  equal to

, with , and . Remember this just means that  and  are both open and

closed and they are disjoint. Since  is compact and is contained in the union of  's, as 

varies over  and since each  is open, so we get a finite cover, so I can write  subset of

union of  for  ranging from  to . Denote this union by , which is obviously open as

well as closed, being a finite union of clopen sets. Clearly,  is not a point of any of this 's,

so  is not inside . Over. 

So, compactness has helped us here just like in the case of Lindelofness, we have got SII

implies SIII.
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Now, we will use this lemma to prove both these implications SI implies SII as well as S0

implies SI. The first one comes very easily now. 

Let   be a compact Hausdroff space satisfying SI. Let   be a closed subset of   and  

belonging to . Since  is a closed in  it is compact. 

So, we can apply that previous lemma to this  . So, what we get? We get a clopen set  

such that  is contained inside  and  is not in . So, this is almost a restatement of the

lemma. Instead of assuming  is compact, all I have here is that   is a closed subset of a

compact space . So, I am getting that hypothesis. 

Now, let us try to prove S0 implies SI. This will take a little more time.

So S0 implies SI means what? S0 means what? singletons are all components. From that I

have to prove that distinct points can be separated. 

So, let  satisfies S0. Fix a point  inside  and look at the set ) of all the points  of 

which cannot be separated from  in . What we want to prove? We want to prove that every

point other than  can be separated. Therefore, finally we have to prove that this 

So, there are steps to prove that. First of all  itself is in , so it is enough to prove that

 is connected, because the only connected subsets of  are singletons. That is what S0

means. So, what I will prove  is connected, then the proof is over.
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So, let us try to prove that  is connected,. The first step is to prove  is closed. (This

is a strange thing, why do we need to prove that something is closed if we want to prove that

is it is connected set? Wait.) So, let   be a point in the complement of  . By the very

definition,   is the set of all the points points which cannot be separated from . This

implies that there is a separation: ,  inside  and  inside . 

But then every point inside  is also separated from . By the very definition, this just means

that  is contained in . So, for each point inside , we have got an open subset 

of  containing that point and contaiend in . That means this is an open subset by itself

which just means  is a closed subset of . 



Now, we can complete the proof that  is connected. Suppose this is not connected. Then

we will arrive at a contradiction. Not being connected means that there is a separation of

 itself. It is not a separation of the whole space; it is separation of  because this not

connected means there is there are two points which can be separated.  So, there is a non

trivial separation: .

So,  I  can  assume   is  either  inside   or  inside  .  So  let  us  assume   is  inside  ,  by

interchanging   and   if  necessary.  We shall  show that  points of   are separated from

 itself. See this is separation of the subspace . In general, it does not imply that

these two points can be separated in  itself.  So that is what we want to prove that and that

is the hardest part here.

So, once you prove that it is a contradiction, because these points of  , they are points

which cannot be separated from .

So, how do you do that?  and  are close subsets of  , so they are closed in  also.

This is where we have used that  is closed. The passage from the subset to the whole.

So, you have got disjoint closed subsets inside .

Now, you use the hypothesis that  is compact Hausdroff. Therefore it is normal. Therefore

there exist open subsets  and  such that  is contained in ,  contained in , and 

is empty. In particular, it implies that  being open  is empty so  will be empty. 

Since  is inside  which is open, it follows that boundary of  is empty, because for

any open subset  , the boundary is  . It is always   but   is open already and

hence   is  .  So  boundary  of   is  empty,  because   is  inside  .  Therefore,

boundary of   is the union boundary of   and boundary of  .

Both of them are empty the union is empty.

So, this means that for every point of boundary of , let me denote it by , is separated from

. Everything in  cannot be separated from , so these points are separated from . So,

 is empty.  is a compact subset because it is a closed subset of a compact space.

So, now again I am using this lemma with which we started. It follows that there is a clopen

subset  such that this  is contained inside  and  is not in ,  is boundary of . 
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So, let me repeat what the kind of things we have done here. So, here is a picture. We started

with  a  separation  ,   here  shown  by  a  square,  another  square  here  ,  so  this  is  a

separation of . After that using the normality, we found  and  disjoint open subsets

containing  and  respectively. Then we look at the boundary of  i.e., ,  that does not

intersect  nor , that is what we proved.

Now, using the lemma, I can fatten this  to an clopen subset , shown by this shaded part

that is , such that  is a neighbourhood of  and it does not contain this , so this much

we have done. So, how does this help? Now, we can complete the proof of (ii) as follows. 
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Look at  which is . So, this is  here and you have to throw away all the shaded part

what you get is this  . unshaded part. Clearly that contains this entire of  . So, this   is

 and   inside   which is   and this     which is contained   that is

empty, see  is a subset of this  and  is empty by choice of  and , so  is also

empty.

Since  is open and  is clopen subset (remember clopen subset is what?)   is also open.

On the other hand, boundary of  which is  is contained inside , so we have  equal to

 (this is by definition) is same as  , because the boundary is taken care here,

boundary points are all contained inside  and I am subtracting that part. 



So,   is closed also. So, we have found a clopen subset   containing the point   and not

intersecting  . So points of are separated from . But   is inside  , we started with a

non-trivial separation and that is a contradiction.
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So, what we have in a compact plus Hausdroff space. all the 4 axioms are equivalent, so that

is one of the reasons why we studied them first of all. However, life is not that easy, when we

want to study them over a larger family of spaces such as non compact spaces, which are very

much needed. That is why all these differences have to come there. Most probably we can

assume Hausdroffness. Actually, finally in the dimension theory that we are going to develop,

we are only taking metric spaces so, no problem. So, but we do not want to put compactness,

so that is why all this.



So, we will continue to study of these things a little bit more now, which will be useful later

on, in dimension theory. Take a  space  which is written as a countable union of closed

sets, each of them satisfying SIII. Then  also satisfies SIII. 

So, let us prove this one. Let  and  be two disjoint closed sets inside . Put  equal to 

and  equal to . I am starting an inductive process here, construct sequences of open sets

 and  of  such that  is inside  and  is inside , each  is contained

in the union of  and ,  is empty, for each . Starting with  equal to  and

 equal to . What are  and ? They have been given to be disjoint close sets. So, there

you do not have to verify much, you have to verify only the last thing here.
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Once we have such a sequence, we can then take   equal to union of  's and   equal to

union of 's. Then  will contain the whole of  and hence is equal to . So, starting

with   which is  ,  that  is  also contained inside  ,  because   is  union of  all  the  's.

Similarly,  is contained inside . Finally I want also to show that  is empty. But that

is easy because  is  and  is  and hence both are closed. 

Once we have this sequence we will have proved something.

So, apply SIII to   and   inside  .   satisfies SIII. So, I get a separation

,  will contain the first set  and  will contain the second set .
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So, now observe that  and  are closed inside  also because  is closed in . So that is

also  hypothesis  here  each   is  closed  in  ,  union  of  countably  many  closed  subsets.

Therefore,  and  are disjoint close subsets , and  are closed anyway.

Therefore, I can apply -ness of  now, I can fatten these things, there exist disjoint open

subsets   and   such that this   is contained inside   and   is contained

inside ,  is empty. Obviously,  which is contained inside  is contained

inside  , so the construction of this sequence for   is over. From  to  

whatever we have done, you repeat this step now by replacing  by , then replace  by  and

so on. You will get the required sequence. 
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I  would  like  to  sum up  a  number of  implications  and  non-implications,  which  we have

proved, just that this could be like a ready-made reference, ready reckoner for you. So, this is

the picture, in this picture the solid arrows like this, like this, they indicate implications. SI

implies S0 like that which is always true. So I have put a broken arrow and labelled it by  to

indicate non implications. S0 does not imply SI and what is the example? , which is our

Kuratowski Knaster-Kuratowski example  setminus the apex point.  

So, I have put it in bracket to remind you what gives you this example. So, like this, we have

under , SI implies S0. This is indicated by the solid arrow marked with . Similarly, SIII

implies SII under . Under compact and Hausdroff, we proved S0 implies SIII. In fact all of

them are equivalent anyway, once you have got here you can come back like this, so all of

them are equivalent.



So, I have shown one arrow that is enough, then you can keep going, but we have also an

elementary example to illustrate SIII may not imply S0, in general, the example is space the

Sierpinski  space.  Remember  Sierpinski  space  consisting  of  just  two  points  one  point  is

closed, other point is not a close set, one point is open other point is not an open set. There

are no disjoint closed sets, no disjoint non-empty closed sets to be precise, therefore SIII is

automatically satisfied. But you cannot separate the two distinct points. Infact, this space is a

connected space. So this implication is not true.

Also, you have proved that under Lindelofness, SII implies SIII. If you have more things you

can accommodate them in this diagram. You are welcome but I think this is enough. So by

the way yeah this set  of all points with all coordinates rational inside the -space gives an

example of SI which is not SII, so this also you have proved. You can go and see where they

are. 

So,  this is  roughly the  summary.  There  may be many other  questions  and  example.  For

instance, I do not know, in general whether SIII (without -ness) implies SII or not, whether

SII without Lindelofness  implies SIII  etc.  That may be due to  lack of time also,  lack of

interest also. That does not mean that we have completed the whole thing, so that is not the

whole idea, this is just an introductory course, not meant to be comprehensive. So, next time

we will start the topological dimension theory, in genuine. So all these were more or less

background preparations. Thank you.


