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Welcome to NPTEL NOC an introductory course on Point Set Topology Part 2. We continue

our study of separation properties S0, SI, SII, SIII and so on. So, today we will just study one

example known after Knaster-Kuratowski, Kuratowski you must be familiar with, has done a

lot of mathematics. You might have learned some of them. I am not very sure whether you

know anything about Knaster however. The example that we are going to give is named after

Canter also,  it is called Cantor's leaky tent by some authors. This name is quite descriptive. It

tells you how it looks like. Later on I will give you a picture of it.   So, the point of this

example is that it is a compact connected subset of . So, it is everything that you want to

have,  yet  what  is  happening  is  that  if  you  delete  just  one  point  from  it,  it  is  totally

disconnected. So, that is why it is very startling when it was produced,  it was a sensation. 
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So, let us start the construction, but it will take some time. Right now, we are going to do

something in between. We start with the Canter, Canter's name is there any way. We start

with the deleted middle one third Canter set  contained inside the closed interval . The

only property of this Canter set that we are going to use is that it is totally disconnected and it

has a countable subset which is dense in it. So if you do not remember anything else you

should just remember this much; it is uncountable, it is a complete metric space, because it is

a closed subspace of , it is totally disconnected and there is a countable subset which is

dense in it. So, we are going to use only this much actually. 

So, now let  be the set of all endpoints of deleted open intervals in the construction of the

Canter set  from . That  is a countable set and it is dense in . Also  is a perfect set

that means every point of  is a limit point of . Indeed every point of  is a limit point of 

itself, that is  is dense. 

Also note that  is countable. So, you can forget about what  is. I have produced such a 

namely, the endpoints of the deleted middle one thirds. Remember starting with  you are

deducting the open interval one third to two third that is the first step, the endpoints are one

third and two third. They will be there of course in . To begin with, it had only the end point

so , then one third two third will be there. Then , etc. all those things will make

up the set  here. 

Now take   to be the complement of   in  . For each  , and  , I am going to

define certain subsets of . Closed interval . So what are they? The space 

consists of points whose first coordinate is , and the second coordinate  lies between  and 



of course, but s must be rational. So, you can easily remember this countable set. Next  is

the set  of all points whose first coordinate is  and the second coordinate  irrational and

lies between  and . Except that we include the two end points viz,  and .

So, for each point  in the Canter set , I have defined subsets of the vertical line segments

subsets  of   in two different rules, when  is inside  or inside .
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Now, take  to be the union of all these  as  ranges over . So,  is actually a subset of

. Now, I make a small modification in , namely  is the union of  along with the line

segment parallel to the -axis, viz., , the top face of . So, the construction of

 and  is over. The topologies are subspace topologies coming from . We are not going

to change the topology. 

So,  we claim the following three things.

(a)  satisfies S0, i.e., totally disconnected; that is the meaning of this one. 

(b)  does not satisfy SI, though this is a Hausdroff space.

(c)  is connected. Why this space in connected? It should be just because we have put this

entire interval at the top. That will take care of connectivity. However, we have to prove it. It

is not that easy. 

So, these three things we are going to prove now. Hope the definitions of  and  are clear.

For  inside this countable  , the points of   have the second coordinates rational. In the

complement , the second coordinate is irrational, except the endpoints  and , they



are allowed that is all. And   has more points than   viz., namely the entire line segment

. So, let us proceed.
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The first part (a) is not so difficult  to that   is totally disconnected, viz.,  each point is a

component. Suppose  is a connected subset of . I want to show that  is a singleton. Look

at  the  two  projection  maps   and  ,  restricted  to   into  .  Where  are  the  images

contained in? That is what you want. If you take the first projection, the image will be inside

. Because the line segments are taken only based on the points of  . So,   being a

connected  subset  of   must  be  a  singleton.  We  are  using  the  fact  that   is  totally

disconnected. So,  is a singleton what does it mean?  is contained in the line 

for some .  

Now, look at . If  is inside , then  is equal to in . See, all the second

coordinates are rational. Therefore it is totally disconnected. And if  is inside , the 

will be contained  , all the irrational numbers, and two extra points  and . It does

not matter. 

In either case , they are totally disconnected.

 is  totally  disconnected.  Also  its  complement,  the  set  of  all  irrational  numbers  is

disconnected. Adding two extra points does not change the total disconnectedness. So 

is totally disconnected as well as connected. Therefore  is a singleton. It follows that 

is a singleton. Thus (a) is proved. 
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Now, for the next (b) and (c) what I am going to do? First I will have a convention: for any

subset   of  ,   will denote the closure of   in the ambient space  , rather than the

subspace  or . So, be careful that the closure notation is taken in the larger space , that

is all. This is just a convenient notation; otherwise, each time I have to say closure in  and

closure in , closure in  and so on. The closures of a subset in different spaces could be

different. So, that is why you have to be careful here.

Our plan is to get the proof of both (b) and (c) in one go. However, we have to break up the

proof into a number of easy steps. Let us see how easy they are. 
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Step 1 is: Let  be a nonempty clopen subset of . For each , such that  is inside 

(this is hypothesis: the subset   of  is clopen and  is chosen such that   is in ;

only then I am going to define this subset), let , which depends upon  as well as , is

the set of all   in  such that singleton  cross the entire line segment  intersected

with  must be contained inside . After all   is a subset of   and so we have to take the

intersection. 

Look at  the set,  this is  a  subset  of   and is  nonempty. So, infimum makes sense the

infimum will also between  and . Now use the fact that  is open. We started with  as a

clopen set. It follows that  must be less than . Why? Because, once it is open and  is

there,  a  small  neighborhood  of  that  point  is  in  ,  which  means  some  line  segment

 is inside . Then the infimum will be less than that  which is less than . So,

, though as such is between  and  it is actually strictly less than , because  open.

Next. Can it be ? Yes it can be , but what happens if ? Then  is contained inside

. And conversely. If the entire line segment intersected with  is inside  then obviously,

what happens  will be inside . Therefore, the infimum will be . Conversely, if this

infimum is , that means the open interval  is contained inside . Therefore,

this entire  except perhaps the point  is inside . 

Just because the infimum is . But then  will be a limit point and . See now I am using

the hypothesis that   is closed. So,   is also inside  . That just means that entire   is

inside . So, remember this criterion now :  if and only if  is contained inside .

Hypothesis on  is that   is clopen and  is inside  to begin with. So, this is our first

step. 
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The second step is:  Start  with a  proper  clopen subset  of  .  We are  taking a non trivial

separation   now. There may be many separations. Actually there are many, namely, you

take a separation , of the Canter set, then raise the whole thing above. Union of all

the 's where  ranges over  (respectively ), that will be automatically a separation of .

(Not  a  separation  of  .   is  finally  shown  to  be  actually  connected.  So,  there  are  no

separations. So, that is what we are going to prove but  has many separations. 

So, we now study one fixed separation of  deeply, . I am going to claim something:

For each , this  will be either inside  or inside , because  is the whole of 

. Accordingly  or  will be defined, which one you do not know, it will depend

upon whether this point is inside  or inside . To treat both of them together, I will just a



notation . There is a lot of symmetry here, because  and  together define a separation

of . 

So,  I  am coming back into  step  1  here.  If  ,  I  have  concluded  something.  Now

suppose  is positive then what happens? Note that  is always less than , that much we

know. Suppose  is inside . There are two cases. So, just for definiteness, suppose 

is inside . Then by the definition of infimum, it follows that  is in the closure of 

(this bar refers to the closure inside ). 

It is limit point of the set and therefore, is inside  . On the other hand, for every epsilon

positive, you can find a  between  and  such that  is inside the complement

of  ,  namely  inside  .  That  is  because  this   is  the  infimum, the  moment  you  take

something less than infimum, there will be a point which is not in the set . If it is not in , it

must be inside , because  is the whole of . 

Therefore,  is in the closure of  also. So, what we have proved is if  is positive

then  is in , assuming that  is inside . 

But the argument is exactly similar if   is inside . Therefore in either case,   is

inside . But what is  ? That is . Remember  is a closed

subset of . So,  is . Similarly,  is . So, this is empty. 

It follows that  is not in . Look at the definition of . 

Suppose  is inside . We have assumed that  is positive, we have also shown that it is

less than  . Therefore, if at all   is in   if and only if   is irrational. Therefore,

 is not in  means that  must be rational. 

So, we have understood the two cases, when  is  or positive. In particular, for all ,

 is rational.
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Now, we exploit this one. Fix a rational number  and define (this can be done for 

irrational also but it is not our concern)  equal to the set of all those points  such that

corresponding . 

Note that   is defined for all  , that is the whole idea; I am still working with the

given separation  of . That is all fixed. 

So, the set of all   is being split up horizontally. We claim that this   is nowhere

dense subset of  .   is a subset of   and hence that of   as well. For this we can work,

instead of in the bottom line , with a copy of , namely , to show that ,

which the copy of  is nowhere dense in  first. We note that  is nothing but

the set of points  where . Therefore, its closure is contained in inside .

That is what we have shown. Therefore,  is empty. 

I  want  to  show that   is  nowhere  dense,  that  is,   has  no  interior.  So,

suppose you have a nonempty open subset  of  contained in , since  is a dense subset

of , it follows that there exist  such that  is is , i,e.,  is in . If you

have any open subset of  there will be a point of  in it, that is all I am using. But if this

point is in , then  will be in ; and the latter set is an empty set? 

This contradiction shows that no nonempty open set is contained inside . Therefore,  is

nowhere dense subset of . 
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Now, we are coming more or more closer to the conclusion.

Step 3 has the more topology now. I define another set , the set of all points  of the Canter

set such that  . We claim that   is a closed subset of  . Put   equal to all those

 such that   is a subset of   and  equal to all those   such that   inside .

Remember   implies   is  inside   or inside   depending upon whether   is

inside  or inside . So, that was our first step. Therefore, this  is nothing but  union . 

So, it suffices to show that  and  are closed subsets of . Then  will be closed. Now

look at . It is nothing but  cross the whole of the interval . Because,  has either have all

the irrational points or all the rational points of  in either case, the closure is  cross the

whole interval. Also note that for any subset   of  , we have   closure is nothing but

. This is a general property of the product spaces, nothing to do with the interval . (If



you take closure of , in space , where  and  are any arbitrary spaces, and  is

a subset of , then it is always . So, that is what I am using for the product topology

here.) 

Now look at the closure of the union of , where  ranges over  , namely, all those  for

which  is inside . It contains  and hence it contains . This is true for all  in  and

therefore it contains the union of all ’s where  ranges over . is the same as the closure of

the union of the closures of  for  which is equal closure of  and therefore equal

to .

On the other hand each  is contained inside its closure and so I can take the union and then

take the closure. Therefore there is equality here. I have to say this one because this union is

an arbitrary union, it is not a finite union. So, these two are the same. 

 But now  is what? it is equal to  and  ranges over . So, I can write this as the

closure of , which is nothing but .  

Moreover, each  , for  , by definition, is inside  . Therefore,  this left hand side is

contained in . That means  is contained in .  

Therefore, if you start with a point  here, and if you take , it is contained in 

and hence in . Therefore,  which is equal to  is contained in  which is equal

to , because  is a closed subset of . That just means that  is in . See I started with 

belonging to  and shown that it is in , which just means that  is closed. Similarly,  is

also closed. 

Therefore,  the set of points  for which  is a closed subset. 

So far, we have proved so much of topology on this one. We just do not know whether this is

nonempty. For all that matters, your discussion, this may be on an empty set. We have not

proved that it is nonempty. We have not proved that any of these  is contained inside  or

. May be each of them has got separated by the separation . Even after having done so

much of topology, we will still do not know that. The next step is precisely that. 
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Step 4:  is dense in  and hence  is actually equal to the whole of . The strange thing is

you try to prove   is just nonempty, there is no other way than actually proving that it is

equal to . This is the typical way wherever you apply Baire's category theorem and that is

what we are going to do, we are going to apply Baire's category theorem here we are not just

proving  is nonempty. We actually prove that this is a dense subset.

So, another notation here, just temporary notation: set of rationals in the open interval ,

let  us  denote  it  by  .  The  only thing that  I  am concentrating on this  one is  that   is  a

countable set. This is going to be an indexing set now. It follows that the elements of  are

the following types. First, those which are inside . So, I am writing that part as union of 

when  ranges over . Then those which are in  (this  maybe empty, I do not know) and

finally those which are in the sets indexed by  what are these sets,  where  ranges over  

, we have proved each  is nowhere dense. 



So, how many of them? there countably many. So,  is written as a countable union, because

P is also countable. Of these the first type and the last type are nowhere dense.

If   is also nowhere dense what happens? You will get a contradiction to Baire's category

theorem, because   is a complete metric space. Indeed, once you write like this countable

union, the stronger statement of Baire's category theorem says that one of the sets must be

dense. So, it follows that  is dense. 

This proof  turned  out to be easy  for  us.  But without Baire's  category theorem, it  is  just

impossible to do anything like this. However, to apply Baire's theorem, we have to do all

these preparation.

We can now complete the proof of both (b) and (c) very easily. 
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So, what is (b)? It says that  does not satisfy SI. Does not satisfy SI means I have to produce

two distinct points in  ,   and   which cannot be separated. So, what do I do? Given any

separation ,  , we have the corresponding  is equal to . What does this imply?

This implies that for  inside ,  is either inside  or inside .

Therefore, for any  inside , the points  and  cannot be separated, because are in

the same . Over. 

I have produced plenty of pairs of points which cannot be separated.  Essentially we have

observed that there are vertical separations what this says is that two points lying on the same

vertical line, they cannot be separated. So, there is nothing like horizontal separation. There is

nothing even slanted separations and so on only vertical separations are there, plenty of them

because  itself is what? totally disconnected. 

If you remember like this it will be easy, and then you can reproduce the detailed proof, there

is no problem. 
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So, now, proof of (c). Remember that   has one extra thing in it, namely, the entire line

segment  . So, suppose,   has separation  . (We want to prove   is connected.

Any disconnected space must be having non trivial separation. Non trivial separation means

what?  and  are nonempty, both  and  are closed and they are disjoint and the union is

. That is all. So, I am just here recalling what is the meaning of non trivial separation).



But   is a connected set and hence contained inside the left hand side. Therefore, it

must be contained inside  or . What does this imply? For definiteness let us say that 

is inside  . Put   equal to   and   equal to  . From  come to the subspace  .

Then  itself will be separated namely  equal to .  and  will be closed subsets of 

and they are disjoint obviously, because  and  are themselves disjoint in S hat. 

So, this  is equal to  separated . In the proof of (b) we have seen that  is either inside

 or inside . but right now  are all inside , by this assumption that the entire  is

inside .  is . So, all  are inside , for all , which just means that  is the

whole of  and  is empty. So, this is  equal to . This means the entire set  is inside .

But  is a subset of . Therefore,  itself is in  because  is nothing but the closure of ,

and   is  a  closed  subset.  That  is  a  contradiction  to  the  assumption  that   equal  to  

separation  is a non trivial separation. So, we have proved that  is connected. 

Now I come to the final construction of the Knaster-Kuratowski example. 
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So, this is the picture. Starting with these  dot, dot, dots, all these form the Canter set. Then

what we did, we took lines vertical lines like this for   all the second coordinates are

rational. For points in the complement, all the second coordinates are irrational. So, that was

my . Then we added this line to get . 

But now what we want to do is you just bring the entire line segment here to a single point

here, collapse the line. How do you collapse it? Along the horizontal lines horizontal keep

moving. So, this line segment from this  to  will be moved to the line from this point to this



point, How much to move? Depends upon its   coordinate. Always, the second coordinate

remains the same. Move them along horizontal lines.  

So, this line has become one single point. In other words if you delete this point and if you

delete the entire line here, whatever remaining thing here will be the open subset it will be

homeomorphic to a subspace of . Namely, all the points  are removed from .  Being a

subspace of a totally disconnected space  , that will be also totally disconnected. So, what

happens is that   is the apex point of this tent. That is why it is called Canter's tent. If you

remove that point, it becomes a leaky tent that leaky tent is totally disconnected. Why this is

connected, this is just obtained by as a quotient of  where we have identified this entire line

to a single point that is all. 

I have written down the formula for this quotient map from  to this tent, this I denote by .

So, how to get this one from ? So I will show you that one now. 
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Here is the example. So, we construct final construction of this , which is nothing but the

quotient of , wherein  is collapsed to a single point. So, this is a notation. However,

since we want to display  as a subspace of , we consider the function  from  to  given

by  something, . You see the second coordinate does not change at all. Everything

is  happening  along the  horizontal  lines.  I  am going to  for  the  -coordinate?  I  will  take

. When  is , what is this point, it is , the identity map. When  is , what

happens, this will be , and this will be  so  is . 

So, all the points  are going to a single point. That means  is going to a single point.

If  is less than , this is a bijection, check that. So, put , the image of  under .

Check that the entire image of   is the full triangle   based on the   and with apex

point . That is . The base of this triangle will be this closed interval then this

will be the apex. So, this  is going to be a subspace of this triangle . 

The same kind of description is there all the time. Restrictions on the -coordinate of those

points on the line joining a point   to the point  . Throw away the top line   from

from   and throw away the point   from  , then   is a homeomorphism. Therefore, it

follows that   which is equal to   is a connected space, being the quotient image of a

connected space under  ,  and  ,  being homeomorphic to a subspace of   is totally

disconnected. In the picture the point  is nothing but . So, everything is proved. 
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So, let us stop here with the final remark that  satisfies neither S0 nor SI. Why? Because it

is  connected,  over.  We shall  see  later  that  adding  an  extra  point  does  not  destroy  SIII.

Therefore, we conclude that  satifies neither SII nor SIII. Let us stop here. Next time

we will  study a  little  more about  S0 SI,  SII,  SIII,  etc,  and introduce what  are  called  -

dimensional spaces. Slowly we will start the study of dimension theory. Thank you.


