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Welcome to NPTEL NOC an introductory course on Point-Set-Topology Part II. Today, we

will study some more examples of this S0, SI, SII and so on. Actually, we started seeing

examples last time, they were all SII. So, we will continue that. Here is one of the important

examples, the Hilbert Cube. Consider the Hilbert space   over a countable set of points,

namely, you can take the natural numbers.

So, recall that the space  consists of square summable sequences of real number under the

 norm which is nothing but take the sum of all the squares and then take the square root. For

topological reasons, we will have a different look at this space. Indeed, we are now going to

consider a smaller set here, namely, let us start with the product of infinite countably many

copies of the closed interval .

So, let us denote it by .  is . There are many ways to put a metric on it. So, what we

will  do?  We will  use  this   space  and  the  metric  given  by  it,  we will  take  a  standard

embedding of  (standard means it is used by a lot of people especially in analysis) in  and

take the induced metric.  Take a point  ,  it  is  like a sequence   where each   is

between   and  ,  we will  send  it  to  point  ,  the second coordinate  is  ,  the  third

coordinate will be divided by  and so on, the -th coordinate will divide by , and so on. So,

this is an arbitrary sequence of real numbers between  and . So, this is another sequence.

Now, what happens if you take the sum of squares that is convergent, sum is convergent. 



So, this will be an element of . Note that  itself is not an element of . It is easily checked

that this map is a continuous bijection onto its image in . 

What is that the image? It is the set of all points whose the -th coordinate is in modulus less

than  or  equal  to  .  Because  look  at  the  image  here,   is  already  between   and  ,

therefore   is  less  than equal  to  .  Conversely,  on a  point  of  ,  if  you put  this

condition, after multiplying the -th coordinate by , it will be still inside . Therefore,

that will come will be a point of .

So, that will show you that this is a bijection. Continuity of this one is obvious. So, it is a

continuous bijection. 

But actually, the way I have defined this phi, I am defining the  -th coordinate, I am just

multiplying by the integer  .  So, even the inverse function is  also continuous there is  no

problem. Which just means that this map  is a homeomorphism of  into a subspace of the

Hilbert space.

That subspace we are denoting by this  and calling it the Hilbert cube. The notation may be

different, but it is commonly agreed that this should be the space named Hilbert cube. The

name is quite standard, but not the notation. So, now without reference to  all the time, we

can just write down the metric on  itself, which is induced by this  namely given any

two point   and   inside  ,  ,  distance between   and   can be defined by taking

, take the square, divide by , take the sum over  and then take the square root. So,

this is the metric. I do not want to write the norm here because  is not a vector space. Any

space which is homeomorphic to  namely, the metric induced topology here, that is

called a Hilbert cube.

After all we are studying topology, so, anything which is homeomorphic to this may be called

a Hilbert cube, we are not very much particularly interested in the actual metric here, but only

on the topology, and now, we know that this topology is nothing but the product topology on

. So, quite often it is convenient to think of this one as just , and  can be thought of as

 with the product topology. This is all about convention and notation.



(Refer Slide Time: 06:50)

The subspace  of  of all points with rational coordinates satisfies SII. So, this is what we

want to say. First of all, it is metric space. Now, inside that it satisfies the SII is what I want

to say. To see this, let   to   be the  -th coordinate projection. Let   be any point in  ,

(remember all the coordinates of all points here will be rational). Take any point   in  .

Take an open subset containing .

Let  be a basic open set containing p, that is open neighbourhood, such that  belongs to 

contained inside , after all every open nbd will be containing a basic neighborhood around

that  point.  So, this  basic  neighborhood will  be of  the form by the very definition of  the

product topology, intersection of finitely many , where each , is an open subset of

. Finitely many of , so there will be a maximum say , and I can include all of them up

to , no problem. But here I am going to choose this  such that each  has this property

namely the boundary of , which will consist of at most two points depending upon where

the interval is taken), both the points must be irrational. 

That means boundary of   is empty for all  . Then you take the inverse

image of  under  , take the finite intersection, that is  . Automatically it will imply that

boundary of   is empty. See this   is a subset of the entire   or you may say  ,

Intersection  with   is  empty because  the boundary  points  have at  least  one  coordinate

irrational. Here you have to use the elementary fact for subspaces of a product space, namely,

if  you have  ,  and  a subset   of  ,  and   of  ,  boundary of   is  equal  to



boundary  of   union  .  Use  it  again  and  again  finitely  many  times,  finite

intersection case, you will get this result. So, that is all.

For each point you can choose a neighborhood with their boundaries empty means what?

That is the property SII. So, we have verified. We have got another example, namely, subset

of all points with all coordinates rational inside the Hilbert cube is also SII.
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Exactly similarly, we can show that  inside  is also SII. What is ? All the coordinates

of all the points are irrational. So, you can reverse the role here, that is fine. 

In contrast,  the subspace   of  all  points whose coordinates are all  rational  in the entire

Hilbert space  does not satisfy SII. So, this is what we want to prove. Inside the smaller set,

namely, inside the compact subspace   this is working but if  you go to the entire  , the

unbounded thing, there SII is not satisfied.

So, we will have examples of spaces which does not satisfy SII. So, once again how do you

show that something is not SII? It suffices to prove that the boundary of any bounded open

neighborhood of  in  is nonempty. So, at , we can prove that property SII fails. 

 

So, take a bounded open neighborhood  of , then its boundary is nonempty; inside , it is

obvious but we claim that inside   it is nonempty. So, in other words you take the entire

boundary intersect it with  and show that it is nonempty. So, this is done as follows, 



So, let me show you the picture here first.
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So, this is origin. Of course, my picture cannot contain infinitely many coordinates. So, you

have to think of this one as a bunch of infinitely many coordinates. So, this is the origin. This

is  is a bounded neighborhood of the origin. I start with a point  on the 

-axis inside U. 

Be sure in the inductive process, I want to do something, so be sure that this   is not far

away from the complement of . It is not far away from the complement of . That means

what? Let us say distance between  and the , which is a closed set, let us say, it is less

than  . This distance is less than  . Why is this possible? The  -coordinate axis intersects

both  and . 

 

Next, I keep this first coordinate of  as it is and move the second coordinate.  

And choose  inside  so that this point is again closer to the boundary

say,  this  distance  is  less  than  .  Having  chosen   will  be  chosen,

keeping the first  -cooridnates the same but changing the  -th coordinate so that the

distance between  and complement of  is less than .  
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Thus, Inductively, we construct a sequence  points  inside

 such  that  distance  between   and   is  less  than  .  It  then follows that  the  limit

sequence namely  is actually on the boundary of . Because first of all,

all these things are inside , so this will be inside . But the distance between this  and 

is  because it is less than  for all . Therefore, this will be in  as well. And  so it is

inside boundary of .  

So, how it is done? I have already explained to you. So, let me read that one. Consider the

linear space  equal to the set of all  belongs to  such that the n-th coordinate is zero

for  beyond one. That is the -axis you can say. Clearly,  intersects both  and . See,

because  contains the origin, this line has to intersect . And because  is bounded, the line

has to intersect the complement. So, this is the property I am using. So, on that subspace,

there will be a point inside  very close to . The process I have to do later as well. So, pick

up  such that its distance from  is less than .

Having chosen , look at  equal to the set of all  in  such that the coordinates are

all  beyond , and up to  coordinates,  must be  as chosen before. This subspace is

again a line. You see if I fix up all  -th coordinates   coordinates and also all coordinates

beyond   also,  and vary only the  -th coordinates,  that  is  line which will  pass

through  and will go put of  because  is bounded. 



So, we pick up -th coordinate such that the point is at a distance less than 

from the complement of . So, each time work inside the real line to get such a point that is

all. 
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So, now, we will have some theorems. So, what we have done, we have shown one example

which does not satisfy SII. It is a subspace of a Hilbert space.  does not satisfy SII. Now,

here is a theorem. 

If  is Lindelof, then SII implies SIII. 

Remember that we have assumed that all our spaces are  right from the first lecture on this

topic.



But just to remind you, I have put  in the bracket here. If  is Lindelof, then SII implies

SIII.

The proof is somewhat similar to what we had done long back maybe theorem 2.5, that a

regular Lindelof space is normal. However, for the sake of completeness we include the proof

here. Because we are not exactly doing normality here nor we are exactly using regularities,

both are stronger hypotheses, SII stronger than regularity, SIII stronger than normality.

So, let us go through this proof carefully. Take  two disjoint closed subsets of . Then

 is union of their complements because they are disjoint. Therefore, given  inside  either

 is inside  or  is inside , maybe it is in both, does not matter. One of them will be true.

Accordingly choose a clopen set  around  such that this  is empty. Accordingly I

have to do. If  is in first one, i.e,  is , I have  empty.

If  is inside , I will have  is empty. So, this is by SII. The property SII assures you

that such a clopen subset  exists.  For each point , I have chosen a , therefore, this  is

union of all the  's and each of them is open,   is Lindelof implies we have a countable

subcover here. Now, we define a new family of clopen subsets. Remember they are both open

as well as closed also.

So, how do I do? These kind of steps are same as what we have done in proving regular

Lindelof implies normality, this step is same thing. Take ,  obtained by subtracting

 from , so, it is . Like that  will be  setminus whatever you have taken earlier,

namely union of all the ,  ranging from  to . 

Now, what we have is each  is disjoint from other 's So, it is a disjoint family. Each  is

clopen, why? Because finite union of clopen sets is clopen and a clopen minus a clopen is

clopen.  And we have written  as disjoint union of countably many open subsets.

Moreover, each   remember,  is  contained inside   and hence   will be empty for

 or . 

The entire family   is divided into two families accordingly, viz, according to whether

 is empty or non empty. 



Now, take  to be union of all those 's such that  is nonempty. And  is the union

of other  's namely, all those  ’s such that   is empty. So, I have taken all the  ’s

here. Some of them are here, some of them are there and they are disjoint families. It follows

that  is a union of  and ,  is empty. Being unions of clopen sets  and 

are both open that is enough. (In fact, they are closed also.) And  will be inside , and

 is empty and hence by very definition,   has to be inside  . So, what we have

done is writing  as disjoint union of two open set, this is a separation now, with  inside

 and  inside . That is the property SIII.
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In conclusion, we know that in a Lindelof   space SII implies SIII. But we have already

proved SIII implies SII as soon as X is a  space. So, these two are equivalent. 

However, even if  is a separable metric space, then the first three of them here, viz., S0, SI

and SII are in-equivalent. Proof is not all that easy. In a   space,  we have seen that SII

implies SI implies S0. So, assume that  is separable metric space even then you cannot go

back in these arrows that is the meaning of this one. So, we will have to produce examples

finally.
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So, here is one example which is not a metric space. But it is an easy example. Start with a

countably infinite set with a discrete topology that is my . Now, take two extra points 

and . So,  disjoint union , that is my . Now, I want to put a topology  on this .

This will consist of all the members of  along with all subsets  of  which intersect 

and such that  is finite. Intersect  means they should contain  or  or both.

Also the complement of that  inside  must be finite. Check that this definition makes  a

topology on . Not very difficult. This kind of thing you have done several times now. For

each  in , if  is inside , then it is discrete topology. So,  is both open and closed in 

. Because all the open subsets in tau they are inside  also and the complement of  is

just   and so finite. So,   they are all components. If a singleton set is both open and

closed that must be a connected component.

Next, we claim that any subset of   larger than   is disconnected. Can you see that?

Take  itself as a subspace of , what is the subspace topology? It is discrete. Therefore,

 itself is disconnected. Therefore, anything larger than  will be also disconnected.

So, this shows that this topology  is totally disconnected. All the singletons are components.

However, this is not a  space at all. Why? Because take any neighborhood of  not in

 if you take a subspace that is discrete, but any neighborhood of  in , the complement

is finite, any neighborhood of   is has complement is finite. But   is infinite. So, the two

neighbourhoods will intersect.  (So, that is similar to this co-finite topology.)



Therefore,  is not a  space. So, these extra points  have been added just to make it

non  space. But this is totally disconnected space. 

 

You do not want to study such anomalous examples that is reason why we are assume -ness

right in the beginning.
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So, I have repeated it here. So, the same thing will tell you that of course, it is not Hausdorff

either because neighborhoods have  and  are not disjoint. In particular it does not satisfy.... 

Oh! sorry, sorry. This space is  but it is not . I want a space which is not even  and this

example is not good for that. That is the whole idea. What we have proved is that  is not

Hausdorff. Because open subsets around  and open subsets around  they always intersect. If

a space is not Hausdorff, it cannot be satisfy SI because SI is stronger than Hausdorffness.

So, this is a totally disconnected space which is not SI.
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Next time we will have within the metric spaces such examples but for that we have to work

very hard, but this is a very well-known example in topology Knaster-Kuratowski example.

So, that we will study next time.


