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Welcome to Module 36 of NPTEL-NOC, An Introductory Course on Point-Set-Topology part-II.

So, we begin a new chapter today, an introduction to dimension theory. So, dimension theory has

several approaches. Among all these available versions, we will choose one such suitable for our

back ground. Of course, they are all topological dimension theories. Our aim here is reasonably

modest one. The depth and width of the subject does not allow us to do much in an elementary

course like this.

We should discuss the zero-dimensional case thoroughly and then take you to the doorsteps of

higher dimensions. Our final  goal will be to prove that the Euclidean space   is exactly of

dimension . If you are interested in more details for a comprehensive study, you are welcome to

read this book of Hurewicz and Wallman for this particular dimension theory.
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So, Module-36, the title is separation of sets. It has something to do with the separation axioms

that we studied so thoroughly and it has something to do with connectivity, but this has nothing

to do with the separability of a metric space, another kind of separability of a space as such. So,

there are too many different ways the word separation and/or its modifications are used. So, you

have to be a bit careful here.

Somewhat unexpectedly, we are beginning with something to do with the connectivity. We have

seen  how connectivity  crops  up  from the  concept  of  continuum in  the  construction  of  real

numbers. The space of real numbers is taken to be of mathematical dimension one. Why I am

saying this one is whether it is topological dimension or a vector space dimension and so on,

various dimension, all of them, you can call out them mathematical dimension, in each of them

dimension  is one.

Note  that  the  word  dimension  in  physics  has  slightly  different  connotation.  So,  in  all

mathematical dimension theories, the space of real numbers must be having dimension one. So,

we begin our study at one stage before that, namely understanding  -dimensional spaces. For

example, if you are studying linear algebra, vector spaces, the -dimensional space is just a zero

vector space and nothing more than that. 



So,  that  simplicity  makes  the life  very  easy  with linear  algebra.  But  that  is  not  the case  in

topology. So, we are trying, we are going to spend considerable amount of time in studying -

dimensional case itself.
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One of the peculiarity of connectedness concept is that the definition is in the negation. In fact,

we define disconnectedness first. And then if the space is not disconnected, then we say it is

connected. So, we would like to come to the opposite of this property namely, disconnectivity. 

So,  we  are  going  to  discuss  certain  stronger  forms  of  negation  of  connectivity,  namely,

disconnectivity, which may be termed as stronger forms of separation axioms, such as Frechet-

space (  space),   space,   space, regularity, normality and so on. So, all those things will

come into picture now indirectly.
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So, let us begin with a definition here. Given any two disjoint subsets  and  in a topological

space , we say they are separated if there exists disjoint open sets  and  such that  is the

union of   and  ,  (  and   are  disjoint  and  that  is  why I  wrote the symbol   here)   is

contained inside  and  is contained inside , and on emore condition after that, viz., you can

assume both of  and V are open or both  and  are closed. It is the same thing.

So, the term here I am going to use is that  and  are separated subsets of . Of course, to be

separated first of all they have to be disjoint. People also use the word disconnected for this one,

but  that  is  somewhat  confusing  for  me,  so  I  do  not  want  to  use  that  terminology  here.

Expresssing  as a disjoint union as above is called a disconnection of  . We will call this a

separation of . So, we had such a notation already introduced also. 

We are just writing it as   equal to , you remember that. So, that notation also I may use

sometimes. In any case, starting with two disjoint subsets, we have enclosed them in  and .

The only thing is the totality of  and  is the whole space  is the extra thing. Otherwise, this

is just like normality provided  and  were closed subsets. So, you are reminded of normality.
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For disjoint closed subsets in a normal space, the two open sets you get may not cover the whole

space. They are disjoint fine, but here it is the whole space that makes both of them closed also.

So, this is going to be quite a strong condition. No doubt it implies normality as soon as there are

disjoint non-empty closed sets in . 

This property implies that the space is disconnected also provided it has more than one point,

whereas there are plenty of normal spaces which are connected. If you have this property of

separation  for  every  pair  disjoint  closed  sets,  then  the  space  will  have  normal  as  well  as

disconnected, so this is very strong. 

Hausdorffness,  regularity,  normality  etc.  can be  termed as  local  properties,  whereas  the one

which we have introduced now is a global property.
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So, let us consider the following conditions on a topological space. To make sense out of these

things, you should have the topological space with at least two points. The singleton space is

connected and it  will satisfy this separation property also vacuously. So, do not  get confused

with that. So, best way is to assume that the space has at least two points.

Then  consider  these  four  different  axioms  of  disconnectedness,  or  axioms  of  separation.

Whatever word you want to use, there is going to be some confusion. So, I can call it the axioms

of separation, and that is why I have included notation S0, SI, SII and SIII. Just to include people

who are using this terminology I have put that in the title itself. 

So, S0 just says connected components of  are all singletons. 

Any two distinct singletons in  are separated is SI. 

Any closed subset  is separated from any point outside . That is SII.

Any two disjoint closed subsets in  are separated. That is SIII.

So, S0, SI, SII, SIII you can see that these three things are one stronger than the other. But this

S0 seems to be not in this list. Why should it be? This is apparently the odd man out. But this is

the one which connects the connectivity with these properties SI, SI, SIII etc.
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In this section, we shall do a comparative study of these four conditions above and indicate their

importance. Note that, S0 is somewhat different from other three statements. Let us give it a

more descriptive name. Sometimes I will use that. But for safety I will keep refering to it as S0

only. 

So, any space which satisfies S naught will be called totally disconnected.



I want to caution you that different authors may use this same terminology to mean different

things. So their total disconnectedness maybe different. For example, one of the books which I

am very  much  using  and  respect,  I  have  a  lot  of  respect  for  this  one,  is  Simmon's  book:

Topology and Modern Analysis.

In this book, a space satisfying our condition SI is called totally disconnected, not S0 

We shall see that property S0 relates the connectivity to the other three axioms of separability

here. So, let us go ahead.
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S0 is seen to be hereditary. If something is totally disconnected, namely, all the singletons are the

components then for any subspace also singletons will be component. So, it is hereditary. It can

be seen without much difficulty that SI and SII are also hereditary. SI is hereditary is just like

Hausdorffness being hereditary. SII is hereditary is just like regularity is hereditary.

However, when you come to SIII, it is similar to normality. Just the way normality fails to be

hereditary, this will also fail to be hereditary, exactly for same reason. But it is weakly hereditary

in the sense that closed subspace of a SIII space will be SIII. Starting with a closed subspace and

then taking closed subsets inside that they will be closed in the original space also. Then if you

take a separation in the original space, you can restrict it to the subspace. Then you are done. So,

that is the proof that it is weakly hereditary. 



Now, SI implies S0. What is SI? Any two points, for any two distinct points there is a separation.

If there is a separation, they cannot be in the same component. So, if any two points cannot be in

the same component, all the connected components are singletons. That is over. 

Quite often people confuse S0 with SI. So, caution S0 does not imply SI. We will see an example

soon. Unfortunately, the word totally disconnected is used for this one also by some authors. So,

you have to be careful with that.
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Let us go ahead. If  satisfies SII, then every point in  has a neighborhood system consisting

of open as well as closed sets (those things are called clopen sets), and conversely. This could

have been taken as a definition of SII. Why? Take a point, take a closed set away from that. Or

take a closed set and take a point outside that, which is same thing as taking an open set and

taking a point inside of that. 

Then what do you have, you have a clopen set along with its  complement,  that will form a

separation on . So, both ways, I mean this argument can be seen both ways. So, SII, if and only

if, at every point of  there is a local base consisting of clopen sets. 

S0, SI and SII are all productive also. 



Once again the proof is similar to proving that Hausdorffness is productuve. This case of S0 is

just  like  proving  product  of  connected  spaces  connected.  It  is  much  simpler  than  this  one.

Product of totally disconnected  space is  totally disconnected.   Suppose each   satisfies S0.

Now, take a subset . Suppose  is connected and has more than one point then I should get a

contradiction. How? There exists   in   and an index   such that  , because they are

different, at least one coordinate must be different. But then if you look at the projection of  on

-th coordinate space space , viz.,  has to be a connected subset because it is image of a

connected set under a continuous function. 

So,  it  is  a  connected  subset  of   with  more  than  one  point  because  .  That  is  a

contradiction, because we assumed that connected components of   are singletons. Therefore,

the product satisfies S0. 

The converse. Why the converse is true? Suppose the product satisfies S0, then each coordinate

space can be thought of as a subspace of the product space, via coordinate inclusion.   

(So, this argument you have used several times.  will be homeomorphic to of  inside

) So, as a subspace because S0 hereditary, it will be S0. So, each coordinate space is S0,

which same thing is each  is S0.

So, this argument you have used several times.  if you look at,  cross one point will

be a subspace of , , but it is homeomorphic to . So, as a subspace because it is

hereditary, it will be S0. So, each coordinate space is S0, which same thing is each  is S0.

So,  I  will  leave  the other  things  here  namely,  productivity  of  SI  and SII  as  an entertaining

exercise to you. Go through at least that much so that you will be familiar with this concept. The

earlier you do them the better. So, before reading the next, before coming to the next module, try

to  do  this  exercise  so  that  you  will  be  completely  familiar,  completely  thorough  with  the

definitions at least.
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In the most general situation, none of these conditions imply any other. Though I said they looks

like stronger, stronger, stronger. Let us see why they are stronger. What is the, in what sense they

are stronger. Under some additional conditions there will be implications one way or the other.

This is what we concentrate upon for some time. viz., when S0 implies SII implies SIII etc. other

way around and so on this is what we are going to do. Just like the usual separation axioms,

Hausdorffness, regularity, normality etc. 

The first key is the Frechetness. If you admit that all the spaces are  spaces, then automatically

SIII will implies SII will implies SI implies S0. 

Exactly same reason as  implies  implies  implies . Exactly same reason. First you have

to assume that the space is . Otherwise, just normality does not imply regularity right? Same

way SIII may not imply SII. As soon as points are closed, SIII will imply SII, because in SII, I

start taking a closed set and a point outside. They will automatically give you disjoint closed

subsets so you can apply SIII and conlcude to SII. 

Similarly, in SI, I start with taking two distinct elements, but they can be treated as a closed set a

pint outside and so SII implies SI. And I have already seen that SI implies S0. Why because any

two points are disconnected here, there is a separation means they are not in the same connected



component. So, this part is easier without the  axiom also. This part we have already seen. So,

under  axiom, one is stronger than the other in that order. 

So, from now onwards we shall always assume that our space is  space. Then we will try to see

whether we can come back. And that is where maybe we have to put more and more conditions.
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Next,  note  that  each  of  S0,  SI,  SII  and  SIII,  respectively,  is  a  strong  form of  Frechetness,

Hausdorffness, regularity and normality, respectively. 

By the way, why S0 implies Frechetness? Tell me. Singletons are connected components and

connected components are always closed. Therefore singletons are closed.

Any metric space with more than one point will serve as an example which is actually a  space

but does not satisfy any of the S0, SI, SII and SIII, only thing you have to assume is that it is

connected.  Each of these S0, SI, SII, SIII imply disconnectedness (provided there are more than

one  point  in  ).  That  is  the  meaning  of  why  these  axioms  bring  a  connection  between

connectivity and separation.

So, before proceeding further, we shall examine some examples now. It turns out that all these

examples are separable metric spaces and satisfy SII. Why I am doing this one, because finally

we are interested in dimension theory developed by Wallman and Hurewicz, in which there is a



blanket  assumption that they are  all  metric  spaces  with  a  countable  dense  subset.  Separable

metric space is a blanket assumption.
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So, let us examine these examples. They are somewhat out of your way so far. 

Any countable metric space satisfies SII. For given any point   and a neighborhood   of  ,

choose  positive such that  is inside . Now, let  be an enumeration of

points of  other than  itself, possible because  is countable (the whole metric space

 is countable). So, I am just labeling all the other elements. 

They maybe finite, they maybe infinite, does not matter dot, dot, dot. I am not saying that it is

infinite. Now choose a real number  so that   and such that   for any .

Note  as  ranges over  and so on, will give you an only a countable number of real

numbers, between   and  , whereas there are uncountably many real  numbers  in  . So, I

choose  which is not equal to any of these countably many numbers. 

It follows that the open ball of radius  around  is contained inside , because  is less than ,

but its boundary, given by equality, that is empty, because equality occurs and  is distinct from

all . Whenever you have an open set with boundary is empty, it is closed set also. 



Now  is contained inside . So, what we have shown that every point has a neighborhood

system consisting of clopen subsets. So, that is the SII that we have seen earlier. 
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Any subspace of   which does not contain any open interval satisfies SII. Like we have been

studying all these examples for quite some time, viz., , the Cantor set etc. These are all

examples  of SII.  Namely,  for  each  point  you can  find a neighborhood system such that  the

boundary of each neighborhood is empty that is the nice way of remembering this SII.

The subspace   of   of  all  points  whose coordinates  are  rational  also satisfies  SII.   is

contained inside , you take you  contained in . That also satisfies SII. All that I have to do

is given a point use coordinate rectangular boxes with one of the coordinate of each corner point

is irrational. Then the entire boundary of the box will not be inside . 

So,  the  boundary of  the  open  box  will  be  empty  as  far  as   is  concerned.  Similarly,  the

subspace  of  of all points whose coordinates are irrational, the other way around, (not the

complement  of  the previous example  by the way,  there  all  coordinates are rational,  here  all

coordinaties are irrational) that also sastisfies SII. Argument is same thing. Sir, so from II,  and

. We can use that here because SII is productive. 

Yes,  you can use that one also. No problem. 
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Moreover,  now comes  the next  step,  where  I  am mixing up.  For this  you will  have  to  use

argument as given below, not the productive property.  

The  subspace   of  ,  of  all  points  (I  have  used  this  symbol  where  the  upper  subscript

corresponds  to  the  dimension  of  the  ambient  Euclidean  space,  but  the  lower  subscripts

corresponds to the number of coordinates being rational)  in which either  is rational or 

is rational and not both. If both are irrational or both are rational, I am not taking that point. So,

this space is also SII.



So, to see this one, you cannot use products and so on. This is not a product space now. So, you

have to directly say that for each point, you can get arbitrary small neighborhoods such that the

boundary of the neighborhood is empty in . That is what you have to do.

So, how do you do that? Each point of this space can be enclosed in an arbitrary small rectangle

whose vertices are rational. If the vertices are rational, they are not inside  . Remember that

only one of the coordinates must be rational for a point to be in side this subspace. The vertices

are not inside but what are the sides, the sides have slopes plus minus , and not lines parallel

to coordinates lines. So slopes  which just means that these are points  such that 

is equal to a constant which is rational.

So, if  is rational, then either both  are rational or both are irratioanl. So, the boundary

of this rectangle does not intersect . So, this space satisfies SII. 

You try to do that inside  . Then you will have a lot of problems, this argument would not

work.

Using lines with slope  seems to work only for . But we have other ways of dealing with

this problem in higher dimensions.  

Start  with two indices   and  ,   that  is  all.  Again,  similar  notation,   denotes  the

subspace  of  points  inside   with  exactly   of  the  coordinates  being  rational.  The  same

construction. 

This   is  replaced by   and   is replaced by  . This space is  a generalization of the above

example. However, the proof that it satisfies SII is not straightforward. At least the method that

we did in (iv) above does not work. Try it. 

Of course, you have to wait and then after some stage, I will give you the proof. So, that is a

much involved proof here. Just take  here instead . Then you can take any  between  and

. Then the problem will be there.



The cases  and  have beeen taken care of already. You see that they correspond to  and

 respectively. So, the problem is only when  is between  and . Also  is already

done. So, I think today this is enough. So, next time we will continue with more examples so that

we are thorough with these concepts S0, SI, SII. So, thank you. That is all for today.


