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Hello. Welcome to Module 35, Wallman compactification-continued. This time we will study a

universal property of Wallman compactification. So, here is a theorem. The statement is quite

elaborate here. 

Start with a compact Hausdorff space and a continuous function  from  to . Then 

(i) given an ultra-closed filter   on , the image filter   is convergent to a unique point

 in . 

It is convergent in  and the point of convergence is unique. (That unique point is denoting by

. That is the meaning of the conclusion in (i). After all, the point depends upon both the

filter  as well as the function .)

(ii) The association   going to this   which you have just defined in (i) is a continuous

function from the space  of all ultra-closed filters, the Wallman copactiifcation of  to the

given compact Hausdorff space , and it has the property that  is identically , the original

function . 

(So, think of  as an inclusion map of  inside , then this  is nothing but the extension of

. That is the way I would like to think of .) 

(iii) The third statement tells you the uniqueness of  itself, namely, any continuous function 

from  to  such that  is  is equal to . 

So, this is the universal property of the compactification that we are discussing now. So, let us go

through the proof of this one.
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So, this is the picture that I have in mind of what I am going to do. Starting with a continuous

function, of course, we have to assume  is compact Hausdorff, I want to get a function  here.

And I have already described how this function is got. Take an element here that means an ultra-

closed filter on , the image filter under , that is the filter on , it may not be ultra-closed or

anything, but it is convergent because  is compact. 

And that convergence is unique because  is Hausdorff. So, that is the function . 

We have to show that this  is continuous and this diagram is commutative. Such  is unique is

the last part. The uniqueness here indicated by the sign !  

Now, suppose   is not convergent in  . What does this mean? It means that for every  

inside , there exists open neighbourhood  of  in  which does not belong to . 

This  is  what  we  have  seen  earlier.  Any  filter  does  not  converge  means  you  have  these

neighborhoods not belonging to the filter. This is what we have used earlier also. But what is the

meaning of this? ,  is a neighborhood of  in , so  that is an open subset of

 and  of that is not in , because  is not in  and  is a super set of . 

 But this means that  is not in .  



Since  is compact, we can choose finitely many 's such that  is covered by the finitely many

open sets 's. But then what happens, if you take inverse images of this, they will cover . So,

 will be the union of these finitely many open sets. Again, we are using the last thing that we

have proved last time and we used it. 

Now, we are using it again here. So, what does this mean? This means that one of them is inside

 because  is an ultra-closed filter on . And that is a contradiction. 

So, we conclude that  is convergent. The point is that we are not proving  is an ultra-

closed. And that may not be true also. I may not be eve a closed filter in general.  That is needed.

We go back to  and do the work there and conclude that the image filter must be convergent.

And the convergence is uniqueness because   is Hausdorff that is an extra assumption on  .

This proves (i)  So, the function  is there now. 

Automatically, if you start with a point  here and go to , the atomic filter , what is

? It is . It is atomic filter generated by the singleton . And that filter will not

converge to any other point than . Therefore,  must be equal to . So, if you come

this way and go by f hat what you get is . It is the conclusion here. So, that is what I have done

here.
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Now, I repeat it. Note that if   is   for some , (which is the meaning of that this   is

 that is the definition of ),  converges to , it follows that  converges to . This

just means that  is . I saw it in a different way, because  is nothing but ,

the atomic filter generate to .

We need  to  show that   from   to   is  continuous with  the  topology here  being  the

Wallman compactification topology, whatever you have defined. So, start with a neighborhood

of  .   is  some point  inside   for  some   inside  .  So, I  must  produce a

neighborhood of  such that that neighborhood goes inside  under . 

Choose an open set  in  such that  belongs to  contained inside  contained inside . I start

with an open subset   which is a neighborhood of  , So, how can you get this one? This is

because  is compact Hausdorff means it is also regular. Compact Hausdorff space is a  space.

So, in particular, it is regular also. And hence we get a neighborhood  of   such that in   is

contained inside .

Now, we claim that this  is inside .  is open in  is open in , plus of that

is an open subset in the Wallman compactification. I want to say that this  that we started with

this filter here belong to this open set. Moreover,  under  this  goes inside . That will

prove the continuity of . So, once I state it is very clear that this happens, but let us verify this

carefully. 
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Since  is , that means what, it is the limit of  and that limit is inside . We have this

neighborhood  is inside , the whole of   is inside . So, in particular   is here.

Hence, there exists some  belonging to  such that this  must be contained inside . That

is the way  is defined. You take all image of members of  under  and then take all supersets

that is the way  is defined.

So, there is some member here  inside ,  is contained in . So, that is the meaning of that

 belongs to . But this means  is contained in  and this  is inside . That means

 must be inside , because  is a filter. That means this filter is in . One part of

the claim is over. 

Now, I have to show that this  is mapped inside  by . What does that mean? Take

any  ultra-closed  filter  belonging  to  the  set  ,  look  at  the  unique  point  to  which  it

converges that convergent point must be inside . that is the meaning of  of this set is contained

in .  

So, start with   inside  , which is just means   belongs to  . What does this

mean? 



 of this one will be inside  .   is contained in  . This is a set here, but that is

contained in each member here. So, in particular, this  is a member of . Since

 is contained in  contained inside ,  must be inside this one . 

From the remark 7.43 which we have used a several times, it follows that the limit  , that

must be inside   and that   is inside  . This completes the proof of the continuity of   and

hence that of statement (ii). 

The statement (ii) says the association defines a continuous function and the commutativity of

the diagram is already seen very easily. 

Now, let us prove (iii). This is a consequence of the fact that  is dense in  and  is

Hausdorff. Remember that if you have a Hausdorff space , suppose you have two continuous

functions  from  one  space  to  a  Hausdorff  space  ,  then  the  set  of  points  wherein  the  two

functions agree that is a closed subset. 

Now, apply that to this situation. You have two functions  to . What are they? They are

both extensions of the same  or you may say that  is  is equal to some . What does

that mean here? If you think of   as a subset of   both of them agree on  , but

 is dense in . If they agree on , they must agree on , because  is the

smallest closed set containing  . A closed set containing   must contain  . That

 is the whole space. Those are the two functions agree on the whole space. 

So, this is the meaning of universal property of . It would have been fantastic if we could

prove such a thing without  being Hausdorff,  namely all  spaces. Unfortunately we are not

able to do that. That is one of the drawbacks of Wallman compactification I would say.
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Returning to our remark 7.72, let us suppose that the Wallman compactification   of the

space is Hausdorff. Take a special case, namely  is Hausdorff. Since a compact Hausdorff

space is a Tychonoff's space and Tychonoff properties is hereditary, it follows that  itself is a

Tychonoff space. 

So,  I  said,  it  would  have  been  wonderful  and  all  that,  but  the  very  fact  that  the  Wallman

compactification is meant to get a compactification of a larger class of spaces, if you want it to

be  Hausdorff,  you  are  forced  to  do  it  only  for  Tychonoff  spaces.  So,  this  is  an  inherent

restriction. If you want to think of this as a weakness, then it is inherent in what you are trying to



do. There is no other way. You cannot expect   to be Hausdorff all the time. That is not

possible.  That was not  the intention of  Wallman at  all.  So,  that  is  the point  of  making this

remark. So, we have to accept it. 

Having done that, let us see what we can do when it is Hausdorff. So,  is already Tychonoff

space, because  is Hausdorff.

The  moment  it  is  a  Tychonoff's  space,  we  can  also  get  its  Stone-Cech  compactification

. So this makes sense. So, what is the difference between these two compactifications

is the natural question that we want to investigate now. So, this is answered by the two universal

properties  of  both  these  compactification.  So,  let   denote  the  Stone-Cech

compactification of . 

By the universal property of ( , we have a unique continuous function  from  to

 such  that   is  equal  to  .  This  is  similar  to  what  we  have  done  for  Wallman

compactification just now. Moreover, since  is a compact Hausdorff space, we can apply

the previous theorem, just now that we have proved, to get a function  from  to 

such that  is equal to . 

So, we did the for any continuous function  from  to  and then we called it . Now here  is

. So, I got  here. So, what we have got is here  is your space which is a Tychonoff space, it

is sitting inside its Stone-Cech compactification here and Wallman compactification there. So,

this is  is the Stone-Cech embedding here and this phi is the Wallman embedding,  going to

the atomic filter . So, what happens, this function gets extended to . 

See from here  is like this, so it gets extended to  like this. And this function gets extended to

phi hat here. Now, what happens? , that will be an extension of  inside  itself, but

the  universal  property  of   says  that  there  cannot  be  two different  extensions.  Identity

function from  to  is already an extension of  obviously,  composite identity is . 

So, there will be two of them, namely go by   and come back by   and the other one is the

identity. So, there cannot be two. That means that this composite is the identity of . Exactly

same way  composite  will be identity of . What is the meaning of this? That these are



homeomorphisms being inverses if each other.  Not only that they are homeomorphisms, they are

commuting with these embeddings. 

The embedded object  goes to the embedded object. The homeomorphism, if you think of  as

subspace of both of them, the homeomorphisms can be thought of as identity on the subspace.

So, it is in this strong sense that we say that the Stone-Cech compactification and the Wallman

compactification are the same for a Tychonoff space, whenever its Wallman compactification is

Hausdorff. We have to assume that. That is the conclusion.
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The general question is when is Wallman compactification is Hausdorff. Suppose we assume it is

Tychonoff space,  suppose you grant  that, will you immediately say that   is Hausdorff.

That is not a correct answer. You may need some more conditions. One does not know that. So,

we will stop here. This is a good point to stop this study here. We cannot go on doing that. So,

next time we will start a new topic. Thank you.


